Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 10 (2015)

Antioxidant and hepatoprotective activity of milk thistle (Silybum marianum L. Gaertn.) seed oil

Anca Hermenean
  • Department of Histology, Faculty of Medicine, Pharmacy and Dentistry, Vasile Goldis Western University of Arad, Romania
  • Institute of Life Sciences, Vasile Goldis Western University of Arad, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miruna Stan / Aurel Ardelean / Luminița Pilat
  • Department of Biochemistry, Faculty of Medicine, Pharmacy and Dentistry, Vasile Goldis Western University of Arad, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ciprian Valentin Mihali / Cristina Popescu
  • Institute of Life Sciences, Vasile Goldis Western University of Arad, Romania
  • Department of Pharmaceutical Sciences, Faculty of Medicine, Pharmacy and Dentistry, Vasile Goldis Western University of Arad, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lajos Nagy / György Deák / Miklós Zsuga / Sándor Kéki / Ildikó Bácskay / Ferenc Fenyvesi / Marieta Costache / Anca Dinischiotu / Miklós Vecsernyés
Published Online: 2015-04-02 | DOI: https://doi.org/10.1515/biol-2015-0017

Abstract

This study has assessed the protective efficacy of Silybum marianum seed oil (SMSO) in the context of CCl4-induced injury and oxidative stress in murine liver. Based on the GC-MS analysis, linoleic and stearic acids, tocopherol, ascorbic acid 2,6 dihexadecanoate and other constituents were identified in SMSO. Swiss mice received oral doses of SMSO daily for 21 days (10 g/kg b.w.) and subsequently injected i.p. with CCl4 (50% v/v in olive oil; 1 ml/kg) on the 22nd day. CCl4 administration induced an elevation of serum amino- and glutamyl transferases activities and an increased peroxidation, as well as a decrease of SOD, CAT, GPx, GR and GST activities in liver. SMSO successfully prevented oxidative stress and restored the biochemical parameters, hepatic architecture and expression of TNF-alpha. These findings suggest that SMSO was effective in counteracting the damaging effects of CCl4-induced injury in hepatocytes, probably due to its inherent antioxidant properties.

Keywords: Silybum marianum; seed oil; CCl4; oxidative stress; antioxidant; hepatoprotection

References

  • [1] Jones A.L., Anatomy of the normal liver., Hepatology: a text book of liver disease, 3rd ed., Zakin D and Boyer TD, Philadelphia: W.B. Saunders, 1996 Google Scholar

  • [2] Sturgill M., Lambert G.H., Xenobiotic-induced hepatotoxicity: mechanisms of liver injury and methods of monitoring hepatic function, Clin. Chem., 1997, 43 (8), 1512-1526 Google Scholar

  • [3] Oesterreicher C.H., Trauner M., Xenobiotic-induced liver injury and fibrosis, Expert Opin. Drug Metab. Toxicol., 2012, 8(5), 571-80 CrossrefGoogle Scholar

  • [4] Clawson G.A., Mechanism of carbon tetrachloride hepatotoxicity, Pathol. Immunopathol. Res., 1989, 8(2), 104-112 CrossrefGoogle Scholar

  • [5] Weber L.W., Boll M., Stampfl A., Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model, Critical Rev. Toxicol., 2003, 33 (2), 105-136 CrossrefGoogle Scholar

  • [6] Muriel P., Rivera-Espinoza Y., Beneficial drugs for liver diseases, J. Appl. Toxicol., 2008, 28(2), 93–103 CrossrefGoogle Scholar

  • [7] Vitaglione P., Morisco F., Caporaso N., Fogliano V., Dietary Antioxidant Compounds and Liver Health, Critical Rev. Food Sci. Nutrition, 2004, 44(7-8), 575–586 CrossrefGoogle Scholar

  • [8] Lee C.P., Shih P.H., Hsu C.L., Yen G.C., Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats, Food Chem Toxicol., 2008, 45(6), 888–895 CrossrefGoogle Scholar

  • [9] Prasanthi K., Muralidhara M., Rajini P.S., Fenvalerat-induced oxidative damage in rat tissues and its attenuation by dietary sesame oil, Food Chem Toxicol., 2005, 43(2), 299-306 CrossrefGoogle Scholar

  • [10] Hsu Y.W., Tsai C.F., Che W.K., Lu F.J., Protective effects of seabuckthorn (Hippophae rhamnoides L.) seed oil against carbon tetrachloride-induced hepatotoxicity in mice, Food Chem. Toxicol., 2009, 47(9), 2281–2288 CrossrefGoogle Scholar

  • [11] Maheswary M.U., Rao P.G.M., Antihepatotoxic effect of grape seed oil in rat, Indian J. Pharmacol., 2005, 37(3), 179-182 CrossrefGoogle Scholar

  • [12] Haddad Y., Vallerand D., Brault A., Haddad P.S., Antioxidant and hepatoprotective effects of silibinin in a rat model of nonalcoholic steatohepatitis, Evidence-Based Complementary and Alternative Medicine, 2011, ID 647903, 10 pages Google Scholar

  • [13] Shaker M.E., Zalata K.R., Mehal W.Z., Shiha G.E., Ibrahim T.M., Comparison of imatinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis, Toxicol. Appl. Pharmacol., 2011, 252(2), 165–175 CrossrefGoogle Scholar

  • [14] Au A.Y., Hasenwinkel J.M., Frondoza C.G., Silybin inhibits interleukin-1b-induced production of pro-inflammatory mediators in canine hepatocyte cultures, J. Vet. Pharmacol. Therap., 2010, 34(2), 120–129 Google Scholar

  • [15] Tsai J.H., Liu J.Y., Wu T.T., Ho P.C., Huang C.Y., Shyu J.C., et al., Effects of silymarin on the resolution of liver fibrosis induced by carbon tetrachloride in rats, J. Viral Hepatitis, 2008, 15(7), 508–514 CrossrefGoogle Scholar

  • [16] Kshirsagar A., Ingawale D., Ashok P., Vyawahare N., Silymarin: A Comprehensive Review, Pharmacognosy Rev., 2009, 3(5), 126-134 Google Scholar

  • [17] Abrol S., Trehan A., Katare O.P., Comparative study of different silymarin formulations: formulation, characterisation and In Vitro/In Vivo evaluation, Curr. Drug Delivery, 2005, 2(1), 45-51 CrossrefGoogle Scholar

  • [18] Passerini N., Perissutti B., Albertini B., Franceschinis E., Lenaz D., Hasa D., et al., A new approach to enhance oral bioavailability of Silybum marianum dry extract: Association of mechanochemical activation and spray congealing, Phytomedicine, 2012, 19(2), 160–168 CrossrefGoogle Scholar

  • [19] Wang Y., Zhang Z., Liu Z., Liu G., Duan C., Jia L., et al., In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery, Nanotechnology, 2010, 21, 155104 CrossrefGoogle Scholar

  • [20] Kasdallah-Grissa A., Nakbia A., Koubaaa N., El-Fazaâb S., Gharbib N., Kamounb Aet al., Dietary virgin olive oil protects against lipid peroxidation and improves antioxidant status in the liver of rats chronically exposed to ethanol, Nutrition Res., 2008, 28(7), 472–479 CrossrefGoogle Scholar

  • [21] Hermenean A., Popescu C., Ardelean A., Stan M., Hadaruga N., Mihali C.V., et al., Hepatoprotective Effect of Berberis vulgaris L.extract/beta-cyclodextrin on carbon tetrachloride – induced acute toxicity in mice, Int. J. Mol. Sci., 2012, 13(7), 9014-934 CrossrefGoogle Scholar

  • [22] Aebi H., Catalase, Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed. Academic Press: New York, NY, USA., 1974, 673–677 Google Scholar

  • [23] Paoletti F., Mocali A., Determination of superoxide dismutase activity by purely chemical system based on NADP(H) oxidation, Meth. Enzymol., 1990, 186, 209–221 Google Scholar

  • [24] Beutler E., Red Cell Metabolism, A Manual of Biochemical Methods, Beutler E. Ed., Grune and Stratton: Orlando, FL, USA. 1984, 68–73 Google Scholar

  • [25] Goldberg D.M., Spooner R.J., Glutathione Reductase, Methods of Enzymatic Analysis, Bergmeyer H.U. Ed., Verlag Chemie: Weinheim, Germany, 1983, 258–265 Google Scholar

  • [26] Habig W.H., Pabst M.J., Jakoby W.B., Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 1974, 249(22), 7130–7139 Google Scholar

  • [27] Del Rio D., Pellegrini N., Colombi B., Bianchi M., Serafini M., Torta F., et al., Rapid fluorimetric method to detect total plasma malondialdehyde with mild derivatization conditions, Clin. Chem., 2003, 49(4), 690-692 CrossrefGoogle Scholar

  • [28] Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem.,1951, 193, 265–275 Google Scholar

  • [29] Johnson D.E., Kroenung C., Mechanism of early carbon tetrachloride toxicity in cultured rat hepatocytes, Pharmacol. Toxicol., 1998, 83(6), 231-239 CrossrefGoogle Scholar

  • [30] Slater T.F., Lipid peroxidation, Biochem. Soc. Transactions, 1983, 10, 70-71 CrossrefGoogle Scholar

  • [31] Rubalya V.S., Neelameagam P., Gayathri K., Estimating antioxidant stability in sunflower and rice bran oil on heating using in vitro analysis, Biomedicine, 2009, 29, 31-36 Google Scholar

  • [32] El-Mallah M.H., El-Shami S.M., Hassanein M.M., Detailed studies on some lipids of Silybum marinarum (L.) seed oil, Grasas y Aceites., 2003, 54(4), 397-402 Google Scholar

  • [33] Khan I., Khattak H.U., Ullah I., Bangash .FK., Study of the physicochemical properties of Silybum marianum seed oil, J. Chem. Soc. Pak., 2007, 29(6), 545-548 Google Scholar

  • [34] Wang T., Hicks K.B., Moreau R., Antioxidant activity of phytosterols, oryzanol, and other phytosterol conjugates, J. Am. Oil Chem. Soc., 2002, 79, 1201-1206 Google Scholar

  • [35] Weber N., Murkherjee K.D., Plant sterols and steryl esters in functional foods and nutraceuticals, Shahidi F. (Ed.), Nutraceutical and specialty lipids and their co-products, CRC Press, Taylor & Francis Group, 2006, 483-508 Google Scholar

  • [36] Kabuto H., Yamamishi T.T., Janjua N., Takayama F., Mankura M., Effects of squalene/squalane on dopamine levels, antioxidant enzyme activity and fatty acid composition in the striatum of Parkinson’s disease mouse model, J. Oleo. Sci., 2013, 62(1), 21-28 CrossrefGoogle Scholar

  • [37] Becker E., Messner B., Berndt J., Two mechanisms of CCl4-induced fatty liver: lipid peroxidation or covalent binding studied in cultured rat hepatocytes, Free Radic. Res. Commun.,1987, 3 (-5), 299-308 Google Scholar

  • [38] Manna P., Bhattacharyya S., Das J., Ghosh J., Sil P., Phytomedicinal role of Pithecellobium dulce against CCl4-mediated hepatic oxidative impairments and necrotic cell death, Evidence-Based Complementary and Alternative Medicine, 2011, 832805, 17 pages Google Scholar

  • [39] Yavuz T., Delibas N., Yildirim B., Altuntas I., Candir O., Cora A., et al., Vascular wall damage in rats induced by methidathion and ameliorating effect of vitamins E and C, Arch. Toxicol., 2004, 78(11), 655–9 CrossrefGoogle Scholar

  • [40] Shiryaeva A., Arkandyeva A., Emelyanova L., Sakuta G., Morozov V., Superoxide anion production by the respiratory chain of hepatocytes of rats with experimental toxic hepatitis, J. Bioener. Biomemebranes, 2009, 41(4), 379-385 Google Scholar

  • [41] Yim M.B., Chock P.B., Stadtman E.R., Enzyme function of copper, zinc superoxide dismutase as a free radical generator, J. Biol. Chem., 1993, 268, 4099-4105 Google Scholar

  • [42] Ames B.M., Shigenaga M.K., Hagen T., Oxidants, antioxidants and the degenerative diseases of aging, Proc. Nat. Acad. Sci., 1993, 90(17), 7915-7922 CrossrefGoogle Scholar

  • [43] Siemeniuk E., Kolodziejczyk L., Skrzydlewska E., Oxidative modifications of rat liver cell components during Fasciola hepatica infection, Toxicol. Mechanism Meth., 2008, 18(6), 519-524 Google Scholar

  • [44] Chen S., Zou L., Li L., Wu T., The protective effect of glycyrrheticnic acid on carbon tetrachloride-induced chronic liver fibrosis in mice via up-regulation of Nrf-2, PLOS One, 2013, 8(1), e53662 Google Scholar

  • [45] Starke D.W., Chen Y., Bapna C.P., Lesnefsky E.J., Mieyal J.J., Sensitivity of protein sulfhydryl repair enzymes to oxidative stress, Free Rad. Biol. Med., 1997, 23(3), 373-384 Google Scholar

  • [46] Tamai K., Satih K., Tsuchida S., Hatayama I., Maki T., Sato K., Specific inactivation of glutathione S transferase in class Pi by SH-modifiers, Biochem. Biophys. Res. Commun., 1990, 167, 331-338 Google Scholar

  • [47] Arab K., Rossary A., Soulere L., Steghens J.P., Conjugated linoleic acid unlike other unsaturated fatty acids, strongly induces glutathione synthesis without any lipoperoxidation, Brit. J. Nut., 2008, 96(5), 811-819 Google Scholar

  • [48] Prabu S.M., Shagirtha K., Renugadevi J., Amelioration of cadmium-induced oxidative stress, impairment in lipids and plasma lipoproteins by the combined treatment with quercetin and α-tocopherol in rats, J. Food Sci., 2010, 75(7), 132-140 CrossrefGoogle Scholar

  • [49] Chen L.H., Interaction of vitamin E and ascorbic acid, In vivo, 1989, 3(3), 199-209 Google Scholar

  • [50] Bandopadhyay D., Das D., Banerjee R.K., Reactive oxygen species: Oxidative damage and pathogenesis, Curr. Sci., 1999, 77(5), 658-666 Google Scholar

  • [51] Sudheesh N.P., Ajith T.A., Janardhanan K.K., Hepatoprotective effects of DL-a-lipoic acid and a-Tocopherol through amelioration of the mitochondrial oxidative stress in acetaminophen challenged rats, Toxicol. Mechanism Meth., 2013, 23(5), 368–376 Google Scholar

  • [52] Belury M.A., Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action, Ann. Rev. Nutr., 2002, 22, 505-531 CrossrefGoogle Scholar

  • [53] Klein E., Weber N., In vitro test for the effectiveness of antioxidants as inhibitors of thiyl radical-induced reaction fatty acids, J. Agric. Food Chem., 2001, 49(3), 1224-1227 CrossrefGoogle Scholar

  • [54] Conforti F., Sosa S., Marrelli M., Menichini F., Statti G.A., Uzunov D., et al., In vivo anti-inflammatory and in vivo antioxidant activities of Mediterranean dietary plants, J. Ethnopharmacol., 2008, 116, 144-151 Google Scholar

  • [55] Mirmiran P., Bahadoran Z., Azizi F., Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complication: A review, World J. Diabetes, 2014, 5(3), 267-281 Google Scholar

  • [56] Ozturk F., Gul M., Ates B., Ozturk I.C., Cetin A., Vardi N., et al., Protective effect of apricot (Prunus armeniaca L.) on hepatic steatosis and damage induced by carbon tetrachloride in Wistar rats, British J. Nutr., 2009, 102(12), 1767–1775 CrossrefGoogle Scholar

  • [57] Domitrovic R., Jakovac H, Blagojevic G., Hepatoprotective activity of berberine is mediated by inhibition of TNF-alpha, COX-2, and iNOS expression in CCl4-intoxicated mice, Toxicology, 2011, 280, 33–43 Google Scholar

  • [58] Chamulitrat W., Blazka M.E., Jordan S.J., Luster M.I., Mason R.P., Tumor necrosis factor-α and nitric oxide production in endotoxin-primed rats administered carbon tetrachloride, Life Sci., 1995, 57(24), 2273–2280 CrossrefGoogle Scholar

  • [59] Garcia-Bailo B., Roke K., Mutch D.M., El-Sohemy A., Badawi A., Association between circulating ascorbic acid, α-tocopherol, 25-hydroxyvitamin D and plasma cytokine concentrations in young adults: a cross-sectional study, Nutr. Met., 2012, 9, 102-110 Google Scholar

  • [60] Micallef M.A., Garg M.L., Anti-inflammatory and cardioprotective effects of n-3 polyunsaturated fatty acids and plant sterols in hyperlipidemic individuals, Atherosclerosis, 2009, 204(2), 476-482 Google Scholar

About the article

Received: 2014-03-04

Accepted: 2014-08-20

Published Online: 2015-04-02


Citation Information: Open Life Sciences, Volume 10, Issue 1, ISSN (Online) 2391-5412, DOI: https://doi.org/10.1515/biol-2015-0017.

Export Citation

©2015 Anca Hermenean et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fatimah Mohammed Ali Yousef, Hala AbdEl-Rahman Ha Khattab, and Heba Abbas Ahmed Sindi
International Journal of Pharmacology, 2018, Volume 14, Number 7, Page 1029
[2]
Sami Gharbia, Cornel Balta, Hildegard Herman, Marcel Rosu, Judit Váradi, Ildikó Bácskay, Miklós Vecsernyés, Szilvia Gyöngyösi, Ferenc Fenyvesi, Sorina N. Voicu, Miruna S. Stan, Roxana E. Cristian, Anca Dinischiotu, and Anca Hermenean
Frontiers in Pharmacology, 2018, Volume 9

Comments (0)

Please log in or register to comment.
Log in