Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 10, Issue 1


Volume 10 (2015)

Isolation and recrystallization of epicuticular waxes from Sorbus and Cotoneaster leaves

Tsveta Ganeva
  • Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia 1164, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslava Stefanova
  • Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia 1164, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dimitrina Koleva
  • Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia 1164, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Segundo Ríos Ruiz
Published Online: 2015-10-27 | DOI: https://doi.org/10.1515/biol-2015-0051


Wax morphology and chemical composition are widely accepted to be important for the protective properties of the leaf’s surface and also valuable characteristics in plant systematics. The leaves of Sorbus domestica L. and Cotoneaster granatensis Boiss., species of two large genera with intricate taxonomy referred to subtribe Pyrinae, Rosaceae (formerly subfamily Maloideae), were studied by scanning electron microscope (SEM) and performing different methods of wax isolation. The aim of the study was to acquire a suitable, cost and time effective method for wax removal. Chloroform and methanol extractions and freeze-embedding method for direct isolation of the wax crystals were applied. Immersing the leaves for 3 minutes in chloroform was sufficient to extract the waxes whereas the efficiency of the methanol solvent was lower. Wax layers with wellpreserved structures of the crystals from both upper and lower epidermis were successfully transferred to artificial surfaces. The recrystallization experiment demonstrated that waxes from chloroform extracts could recrystallize in in vitro conditions on artificial surfaces. The crystals showed same micromorphology as on the intact leaves. Results of this study could be applied in further analytical researches of the waxes of S. domestica and C. granatensis or other species of the subtribe Pyrinae.

Keywords: Rosaceae; epidermis; wax extraction; freezeembedding; recrystallization


  • [1] Neinhuis C., Barthlott W., Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of Botany, 1997, 79, 667-677 Google Scholar

  • [2] Koch K., Dommisse A., Niemietz A., Barthlott W., Wandelt K., Nanostructure of epicuticular plant waxes: Self-assembly of wax tubules, Surface Science, 2009, 603, 1961-1968 Google Scholar

  • [3] Koch K., Bhushan B., Ensikat H.J., Barthlott W., Self-healing of voids in the wax coating on plant surfaces, Phil. Trans. R. Soc. A, 2009, 367, 1673-1688 Google Scholar

  • [4] Baker E.A., Chemistry and morphology of plant epicuticular waxes, The plant cuticle, London, UK, Academic Press, 1982 Google Scholar

  • [5] Barthlott W., Neinhuis C., Cutler D., Ditsch F., Meusel I., Theisen I., et al., Classification and terminology of plant epicuticular waxes, Bot. J. Linn. Soc., 1998, 126, 237-260 Google Scholar

  • [6] Jeffree C.E., Baker E.A., Holloway P.J., Ultrastructure and recrystallization of plant epicuticular waxes, New Phytol., 1975, 75, 539-549 Google Scholar

  • [7] Jeffree C.E., Sandford A.P., Crystalline structure of plant epicuticular waxes demonstrated by cryostage scanning electron microscopy, New Phytol., 1982, 91, 549-559 Google Scholar

  • [8] McWhorter C.G., Paul R.N., Barrentine W.L., Morphology, development and recrystallization of epicuticular waxes of johnsongrass (Sorghum halepense), Weed Science, 1990, 38, 22-33 Google Scholar

  • [9] Jetter R., Rieder M., Epicuticular crystals of nonacosan-10-ol: In-vitro reconstruction and factors influencing crystal habits, Planta, 1994, 195, 257-270 Google Scholar

  • [10] Jetter R., Riederer M., Lendzian K.J., The effects of dry O3, SO2 and NO2 on reconstituted epicuticular wax tubules, New Phytol., 1996, 133, 207-216 Google Scholar

  • [11] Meusel I., Neinhuis C., Markstädter C., Barthlott W., Ultrastructure, chemical composition, and recrystallization of epicuticular waxes: transversely ridged rodlets, Can. J. Bot., 1999, 77, 706-720 Google Scholar

  • [12] Meusel I., Neinhuis C., Markstädter C., Barthlott W., Chemical composition and recrystallization of epicuticular waxes: coiled rodlets and tubules, Plant Biol., 2000, 2, 462-470 Google Scholar

  • [13] Ensikat H.J., Neinhuis C., Barthlott W., Direct access to plant epicuticular wax crystals by a new mechanical isolation method, Int. J. Plant Sci., 2000, 161, 143-148 Google Scholar

  • [14] Ensikat H.J., Boese M., Mader W., Barthlott W., Koch K., Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies, Chem. Phys. Lipids, 2006, 144, 45-59 Google Scholar

  • [15] Potter D., Eriksson T., Evans R.C., Oh S., Smedmark J.E.E., Morgan, D.R., et al., Phylogeny and classification of Rosaceae, Pl. Syst. Evol., 2007, 266, 5-43 Google Scholar

  • [16] Campbell C.S., Evans R.C., Morgan D.R., Dickinson T.A., Arsenault M.P., Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae) - Limited resolution of complex evolutionary history, Pl. Syst. Evol., 2007, 266, 119-145 Google Scholar

  • [17] Uzunova K., Mladenova R., A comparative foliar epidermis investigation of the Bulgarian species of genera Cotoneaster Med., Pyracantha M. J. Roem. and Mespilus L. (Rosaceae, Maloidae), Phytologia Balcanica, 2000, 6, 179-193 Google Scholar

  • [18] Ganeva T., Comparative leaf epidermis study of some subfamily Maloideae (Rosaceae) species, PhD thesis, Sofia University, Sofia, Bulgaria, 2011 Google Scholar

  • [19] Ganeva T., Uzunova K., Leaf epidermis structure in Amelanchier ovalis Medic. (Rosaceae). Biotechnol. Biotechnol. Equip., 2010, 24, 36-38 Google Scholar

  • [20] Ganeva T., Uzunova K., Comparative leaf epidermis study in species of genus Malus Mill. (Rosaceae), Botanica Serbica, 2010, 34, 45-49 Google Scholar

  • [21] Ganeva T., Leaf epidermis structure in Cydonia oblonga (Rosaceae), Biotechnol. Biotechnol. Equip., 2009, 23, 965-967 CrossrefGoogle Scholar

  • [22] Ganeva T., Uzunova K., Koleva D., Comparative leaf epidermis investigation in species of genus Crataegus L.( Rosaceae) from Bulgaria, Fedd. Rep., 2009, 120, 169-184 Google Scholar

  • [23] Bewick T.A., Shilling D.G., Querns R., Evaluation of epicuticular wax removal from whole leaves with chloroform, Weed Technol., 1993, 7, 706-716 Google Scholar

  • [24] Wen M., Buschhaus C., Jetter R., Nanotubules on plant surfaces: Chemical composition of epicuticular wax crystals on needles of Taxus baccata L., Phytochemistry, 2006, 67, 1808-1817 Google Scholar

  • [25] Jetter R., Schäffer S., Riederer M., Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L., Plant Cell Environ., 2000, 23, 619-628 Google Scholar

  • [26] Bergmadinger-Stabentheiner E., Physical injury, re-crystallization of wax tubes and artefacts: identifying some causes of structural alteration to spruce needle wax, New Phytol., 1995, 130, 67-74 Google Scholar

About the article

Received: 2015-03-22

Accepted: 2015-07-09

Published Online: 2015-10-27

Citation Information: Open Life Sciences, Volume 10, Issue 1, ISSN (Online) 2391-5412, DOI: https://doi.org/10.1515/biol-2015-0051.

Export Citation

©2015 Tsveta Ganeva et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in