[1]
Scherer P.A., Vollmer G.R., Fakhouri T., Martensen S., Development of methanogenic process to degrade exhaustively the organic fraction of municipal grey waste under thermophilic and hyperthermophilic conditions, Water Sci. Technol., 2000, 41, 83-91 PubMedGoogle Scholar
[2]
Schink B., Energetics of syntrophic cooperation in methanogenic degradation, Microb. Mol. Biol. Rev., 1997, 61, 262-280 Google Scholar
[3]
Weiland P., Biogas production: current state and perspectives, Appl. Microbiol. Biotechnol., 2010, 85, 849-860Web of SciencePubMedCrossrefGoogle Scholar
[4]
Wilkie A., Biomethane from Biomass, Biowaste, and Biofuels, 195-205. In Wall J., Harwood C., Demain A. (ed.), Bioenergy. ASM Press, Washington, 2008 Google Scholar
[5]
Krich K., Augenstein D., Batmale J.P., Benemann J., Rutledge B., Salour D., Biomethane from Dairy Waste. A Sourcebook for the Production and Use of Renewable Natural Gas in California. USDA Rural Development, 2005 Google Scholar
[6]
Kushkevych I., Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria, Studia Biologica, 2016, 10(1), 197-228 Google Scholar
[7]
Barton L.L., Hamilton W.A., Sulphate-Reducing Bacteria. Environmental and Engineered Systems. Cambridge University Press, 2010, 553 Web of ScienceGoogle Scholar
[8]
Ahring B., Ibrahim A.A., Mladenovska Z., Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Resour., 2001, 35, 2446-2452 Google Scholar
[9]
Ziemiński K., Frąc M., Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African J. Biotech., 2012, 11(18), 4127-4139 Google Scholar
[10]
Conrad R., Contribution of hydrogen to methane production and control of hydrogen concentration in methanogenic soils and sediments. FEMS Microbiol. Ecol., 1999, 28, 193-202 CrossrefGoogle Scholar
[11]
Demirel B., Scherer P., The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev. Environ. Sci. Biotechnol., 2008, 7, 173-190CrossrefGoogle Scholar
[12]
Jackel U., Thummes K., Kampfer P., Thermophilic methane production and oxidation in compost. FEMS Microbiol. Ecol., 2005, 52, 175-184PubMedCrossrefGoogle Scholar
[13]
Santosh Y., Sreekrishnan T.R., Kohli S., Rana V., Enhancement of biogas production from solid substrates using different techniques,Bioresour. Technol., 2004, 95, 1-10 Google Scholar
[14]
Griffin M.E., McMahon K.D., Mackie R.I., Raskin L., Methanogenic population dynamics during start-up of anaerobic digesters treating municipal soild waste and biosolids. Biotechnol. Eng., 2000, 57, 342-355 Google Scholar
[15]
Grothenhuis J.T., Smith M., Plugge C.M., Yuansheng X., Lammeren A.A., Stams A.J., et al., Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol., 1991, 57, 1942-1949PubMedGoogle Scholar
[16]
Ilyin V.K., Korniushenkova I.N., Starkova L.V., Lauriniavichius K.S., Study of methanogenesis during bioutilization of plant residuals. Acta Astronautica, 2005, 56, 465-470 CrossrefPubMedGoogle Scholar
[17]
Zeikus J.G., The biology of methanogenic bacteria, Bact. Rev., 1977, 41, 514-541 Google Scholar
[18]
Amon T., Amon B., Kryvoruchko V., Zollitsch W., Mayer K., Gruber L., Biogas production from maize and dairy cattlemanure – influence of biomass composition on the methane yield, Agric. Ecosys.Environ.,2007,118, 173-182 CrossrefGoogle Scholar
[19]
Chynoweth D.P., Turick C.E., Owens J.M., Jerger D.E., Peck M.W., Biochemical methane potential of biomass and waste feedstocks, Biomass Bioen.,1993, 5, 95-111 CrossrefGoogle Scholar
[20]
Kushkevych I.V., Effect of hydrogen sulfide at differential concentrations on the process of dissimilatory sulfate reduction by the bacteria Desulfovibrio piger, Sci Notes of Ternopil Nat. Ped. Univ. Series Biol, 2013, 4(57), 74-80 Google Scholar
[21]
Kushkevych I.V., Dissimilatory sulfate reduction by various Desulfovibrio sp. strains of the human intestine, Microbiol. and Biotechnol., 2013, 3(23): 50-63Google Scholar
[22]
Kushkevych I.V., Dissimilatory sulfate reduction in bacterium Desulfovibrio piger Vib-7 under the effect of medium with differential acidity, American J. Microbiol. & Biotechnol, 2014, 1(2), 49-55. Google Scholar
[23]
Czech Standards Institute. Characterization of waste – Calculation of dry matter by determination of dry residue or water content ČSN EN 14346, 2007
[24]
Czech Standards Institute. Characterization of waste – Determination of loss on ignition in waste, sludge and sediments ČSN EN 15169, 2007 Google Scholar
[25]
Czech Standards Institute. Characterization of sludge – Determination of pH-value ČSN EN 12176, 1999 Google Scholar
[26]
Nossa C.W., Oberdorf W.E., Yang L., Aas J.A., Paster B.J., Desantis T.Z., et al., Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome, World J. Gastroenterol., 2010, 16(33), 4135-4144 Web of ScienceCrossrefPubMedGoogle Scholar
[27]
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., et al., QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 2010, 7(5), 335-336 Web of SciencePubMedCrossrefGoogle Scholar
[28]
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-10 PubMedCrossrefGoogle Scholar
[29]
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 2012, 28(12), 1647-9 PubMedWeb of ScienceCrossrefGoogle Scholar
[30]
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., et al., Clustal W. and Clustal X version 2.0. Bioinformatics, 2007, 23(21), 2947-8 PubMedCrossrefGoogle Scholar
[31]
Chen P.Y., Popovich P.M., Correlation: Parametric and Nonparametric Measures. Sage University Papers Series on Quantitative Applications in the Social Sciences, 2002 Google Scholar
[32]
Bailey N.T.J., Statistical Methods in Biology, third ed. Cambridge University Press, Cambridge, 1995 Google Scholar
[33]
Itoh T., Yoshikawa N., Takashina T., Thermogymnomonasacidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan, Int. J. Syst. Evol. Microbiol., 2007, 57(11), 2557-61 CrossrefPubMedGoogle Scholar
[34]
Maus I., Wibberg D., Winkler A., Pühler A., Schnürer A., Schlütera A., Complete Genome Sequence of the Methanogen Methanoculleus bourgensis BA1 Isolated from a Biogas Reactor Genome, Announcements, 2016, 4(3) e00568-16 Google Scholar
[35]
Kushkevych I.V., Dose-dependent effect of electron acceptor and donor on dissimilatory sulfate reduction by bacteria Desulfovibrio piger Vib-7 of human intestine, Studia Biologica, 2014, 8(1), 103-116 Google Scholar
[36]
Kushkevych I.V., Growth of the Desulfomicrobium sp. strains, their sulfate- and lactate usage,production of sulfide and acetate by the strains isolated from the human large intestine, Microbiol. Discovery, 2014, 2, 1-8 CrossrefGoogle Scholar
[37]
Kushkevych I., Bolis M., Bartoš M., Model-based characterization of the kinetic parameters of dissimilatory sulfate reduction under the effect of different initial density of Desulfovibrio piger Vib-7 bacterial cells, The Open Microbiol. J., 2015, 9, 55-69 Google Scholar
[38]
Ferry J., Methanogenesis: Ecology, Physiology, Biochemistry & Genetics, Chapman & Hall Inc, New York, 1993 Google Scholar
[39]
Conway de Macario E., Maeder D. L., Macario A.J.L., Breaking the mould: archaea with all four chaperoning systems, Biochem. and Biophys. Res. Commun., 2003, 301, 811-812 Google Scholar
[40]
Jaenicke S., Ander C., Bekel T., Bisdorf R., Dröge M., Gartemann K.H. et al., Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing, PLoS One, 2011, 6, e14519 PubMedCrossrefWeb of ScienceGoogle Scholar
[41]
Stolze Y., Zakrzewski M., Maus I., Eikmeyer F., Jaenicke S., Rottmann N.,et al., Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions, Biotechnol. Biofuels, 2015, 8, 14 CrossrefGoogle Scholar
[42]
Westerholm M., Levén L., Schnürer A., Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia, Appl. Environ. Microbiol., 2012, 78, 7619-7625 Web of SciencePubMedCrossrefGoogle Scholar
[43]
Westerholm M., Müller B., Isaksson S., Schnürer A., Trace element and temperature effects on microbial communities and links to biogas digester performance at high ammonia levels, Biotechnol. Biofuels, 2015, 8, 154 CrossrefPubMedWeb of ScienceGoogle Scholar
[44]
Moestedt J., Müller B., Westerholm M., Schnürer A., Ammoniathreshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate, Microb. Biotechnol., 2016, 9, 180-194 CrossrefPubMedGoogle Scholar
[45]
Fotidis I.A., Karakashev D., Angelidaki I., Bioaugmentation with anacetate-oxidising consortium as a tool to tackle ammonia inhibition ofanaerobic digestion, Bioresour Technol., 2013, 146, 57-62 CrossrefGoogle Scholar
[46]
Schnürer A., Schink B.H., Svensson B.H., Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium, Int. J. Syst. Bacteriol., 1996, 46, 1145-1152 CrossrefPubMedGoogle Scholar
[47]
Fotidis I.A., Wang H., Fiedel N.R., Luo G., Karakashev D.B., Angelidaki I., Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate, Environ. Sci. Technol., 2014, 48, 7669-7676 CrossrefWeb of SciencePubMedGoogle Scholar
[48]
Maus I., Wibberg D., Stantscheff R., Stolze Y., Blom J., EikmeyerF.G.,et al., Insights into the annotated genome sequence of Methanoculleus bourgensis MS2 (T), related to dominant methanogens in biogas-producing plants, J. Biotechnol., 2014, 201, 43-53 Web of ScienceGoogle Scholar
[49]
Wibberg D., Blom J., Jaenicke S., Kollin F., Rupp O., Scharf B., et al., Complete genome sequencing of Agrobacterium sp.H13-3, the former Rhizobium lupine H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid, J. Biotechnol., 2011, 155, 50-62 CrossrefGoogle Scholar
Comments (0)