Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Letters

The Journal of Adam Mickiewicz University, Faculty of Biology; Poznan Society for the Advancement of the Arts and Sciences

2 Issues per year


CiteScore 2016: 0.20

Open Access
Online
ISSN
1734-7467
See all formats and pricing
More options …

Effect of fatty acid content on the level of cottonseed colonization by fungi

Aly Aly / Ezzat Hussein / Moawad Omar / Ibrahim El-Abbasi / Kamel Abd-Elsalam
  • College of Science, Botany and Microbiology Department, King Saud University, P.O. Box: 2455, Riyadh 1145, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-07-05 | DOI: https://doi.org/10.2478/v10120-011-0013-9

Effect of fatty acid content on the level of cottonseed colonization by fungi

Non-sterilized seeds of 12 Egyptain cotton (Gossypium barbadense L.) genotypes were examined for qualitative and quantitative estimates of seed-borne fungi. Rhizopus stolonifer (39.7%), Aspergillus niger (33.5%), and Penicillium sp. (23.3%) were the most predominant fungi isolated from the seeds. Other fungi occurred at frequencies that ranged from 0.3 to 17.7%. Gas-liquid chromatography (GLC) analysis of fatty acid composition of the seeds revealed the presence of the following fatty acids: caproic, caprylic, capric, lauric, myristic, palmitic, margaric, stearic, oleic, linoleic, and linolenic. The total mean percentage of the monounsaturated fatty acids was 59.11%, while that of the unsaturated fatty acids was 16.72%. Isolation frequencies of Alternaria alternata, A. flavus, A. niger were not significantly correlated with the content of any fatty acid. Isolation frequencies of the other fungi were significantly correlated with the content of 1-2 fatty acids. Cladosporium sp. was a notable exception because its isolation frequency was significantly correlated with the content of caproic (r = 0.926, p < 0.01), caprylic (r = 0.638, p < 0.05), palmitic (r = -0.586, p < 0.05), and linoleic acid (r = 0.917, p < 0.01). It was possible to group the isolated fungi into 5 distinct categories based on their sensitivity to the fatty acids (the magnitude of R2 values). The results of the present investigation suggest that certain fatty acids regulate the colonization of cottonseed by fungi, and that the control of these fungi may be possible by modifying the fatty acid content of the seed.

Keywords: Cottonseed; fatty acid composition; seed-borne fungi

  • Abdel-Rehim S., Aly, A. A., Eisa H. A., Zenab M. A. 1993. Deterioration of cotton fibers caused by some cellulolytic fungi isolated from rotted cotton bolls. Menofyia J. Agric. Res. 18: 2095-2110.Google Scholar

  • Amer M. A. A. 1986. Studies on cotton-seed infection by fungi. M. Sc. Thesis, Helwan University, Alexandria.Google Scholar

  • Avis T. J., Bélanger R. R. 2001. Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl. Environ. Microbiol. 67: 956-960.Google Scholar

  • Barnett H. L., Hunter B. B. 1979. Illustrated genera of imperfect fungi, 3rd ed. Burgess Publishing Company, Minneapolis, Minnesota.Google Scholar

  • Bergsson G., Arnfinnsson J., Steingrimsson O., Thormar H. 2001. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 45: 3209-3212.Google Scholar

  • Booth C. 1971. The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, England.Google Scholar

  • Calvo A. M., Gardner H. W., Keller N. P. 2001. Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J. Biol. Chem. 276: 25766-25774.Google Scholar

  • Calvo A. M., Hinze L. L., Gardner H. W., Keller N. P. 1999. Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl. Environ. Microbiol. 65: 3668-3673.PubMedGoogle Scholar

  • Davis R. G. 1977. Fusarium species in the internal microflora of Mississippi cottonseed. Seed Sci. Technol. 5: 587-591.Google Scholar

  • Davis R. G. 1982. Relationships between seedborne microorganisms and cotton seedling emergence. Mississippi Agricultural and Forest Experimental Station Research Report No. 7: 1-3.Google Scholar

  • Diener U. L., Wagener R. E., Morgan-Jones G., Davis N. D. 1976. Toxigenic fungi from cotton. Phytopathology 66: 514-516.Google Scholar

  • El-Helaly A. F., Ibrahim I. A., Asswah M. W., Wasfi E. H., El-Goorani M. A. 1966. General survey of plant diseases and pathogenic organisms in Egypt until 1966. Alex. J. Agric. Res. 15: 61.Google Scholar

  • Farag R. S., Hallabo S. A. S., Hewedi F. M., Basyony A. E. 1986. Chemical evaluation of rape seed. Fette-Scifen Anstrichmittel 88: 391-397.Google Scholar

  • Gilman J. C. 1966. A manual of soil fungi, 2nd ed. The Iowa State University Press, Iowa.Google Scholar

  • Gomez K. A., Gomez A. A. 1984. Statistical procedures for agricultural research, 2nd ed. John Wiley and Sons Ltd., New York.Google Scholar

  • Grzywacz A., Rosochacka J. 1977. Attempt at elucidation of the role of fatty acids in the resistance of Pinus sylvestris L. seeds to infection by damping-off fungi in dependence on the colour of their seed shells (coats). Acta Soc. Bot. Polon. 46: 569-575.Google Scholar

  • Guo J. C. Song X. X., Zhang J. X. Li C. B. 1991. Correlation of fatty acid components variation in cotton tissues with Fusarium wilt resistance. China Cottons 2: 46-48.Google Scholar

  • Halloin J. M., Bourland F. M. 1981. Deterioration of planting seed. In: Compendium of cotton diseases (Watkins G. M., Ed.), pp. 11-13, The American Phytopathological Society, St. Paul, Minnesota.Google Scholar

  • Harman G. E., Nedrow B., Nash G. 1978. Stimulation of fungal spore germination by volatiles from aged seeds. Can. J. Bot. 56: 2124-2127.Google Scholar

  • Harman G. E., Mattick L. R., Nash G., Nedrow B. L. 1980. Stimulation of fungal spore germination and inhibition of sporulation in fungal vegetative thalli by fatty acids and their volatile peroxidation products. Can. J. Bot. 58: 1541-1547.Google Scholar

  • Hendrix J. W., Apple J. L. 1964. Fats and fatty acid derivatives as growth stimulants and carbon sources for Phytophthora parasitica var. nicotianae. Phytopathology 54: 987-994.Google Scholar

  • [ISTA] InternationalSeedTesting Association 1993. International rules for seed testing. Seed Science and Technology 21 Supplement Rules.Google Scholar

  • Klich M. A. 1986. Mycoflora of cottonseed from the southern United States: A three year study of distribution and frequency. Mycologia 78: 706-712.Google Scholar

  • Li X. C. Jacob M. R., Elsohly H. N., Nagle D. G., Smillie T. J., Walker L. A. 2003. Acetylenic acids inhibiting azole-resistant Candida albicans from Pentagonia gigantifolia. J. Nat. Prod. 66: 1132-1135.Google Scholar

  • Liu S. Ruan W., Li J., Xu H., Wang J., Gao Y., Wang J. 2008. Biological control of phytopathogenic fungi by fatty acids. Mycopathologia 166: 93-102.Web of ScienceGoogle Scholar

  • Mezhlum-Yan L. G., Redina E. F., Kasymova G. A., Yuldashev K. H., Khodzhibaera S. M. 1994. Functional properties of a serine protease inhibitor from cottonseeds. Chem. Nat. Compounds 30: 492-495.Google Scholar

  • Mohamed-Hoda Z., Fatma H., Salem A., El-Wakil A. A. 1999. Effect of cottonseed delinting on seed-borne fungi, emergence, and seedling disease incidence. Egy. J. Agric. Res. 77: 1007-1021.Google Scholar

  • Nelson S. G., Campbell C. L. 1992. Incidence and patterns of association of pathogens of a leaf spot disease complex on white clover in the Piedmont region in North Carolina. Phytopathology 82: 1013-1021.Google Scholar

  • Podleckis E. V., Crutis C. R., Heggestad H. E. 1984. Peroxidase enzyme markers for ozone sensitivity in sweet corn. Phytpathology 74: 572-577.Google Scholar

  • Roncadori R. W., Mccarter S. M., Crawford M. 1971. Influence of fungi on cottonseed deterioration prior to harvest. Phytopathology 61: 1326-1328.Google Scholar

  • Ruttledge T. R., Nelson E. R. 1997. Extracted fatty acids from Gossypium hirsutum stimulatory to the seed-rotting fungus, Pythium ultimum. Phytochemistry 46: 77-82.Google Scholar

  • Salunkhe D. K., Chavan J. K., Adsule R. N., Kadam S. S. 1992. World Oilseeds: Chemistry, Technology, and Utilization. Van Nostrand Reinhold, New York.Google Scholar

  • Simpson M. E., Marsh P. B., Merola G. V., Ferrett R. J., Filsinger E. G. 1973. Fungi that infect cottonseeds before harvest. Appl. Microbiol. 26: 608-613.PubMedGoogle Scholar

  • Vogel A. J. 1975. A Text Book of Practical Original Chemistry, 3rd Ed. English Language Book Society and Longman Group Ltd., London.Google Scholar

  • Waked M. Y., El-Samra I. A., Fayed M. A. 1981. Histological studies on cotton seeds infected with some rotting fungi. Phytopathol. Mediterr. 20: 136-140.Google Scholar

  • Walters D., Raynor L., Mitchell A., Walker R., Walker K. 2004. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 157: 87-90.Google Scholar

  • Walters D. R., Walker R. L., Walker K. C. 2003. Lauric acid exhibits antifungal activity against plant pathogenic fungi. J. Phytopathol. 151: 228-230.Google Scholar

  • Wilson R. A., Calvo A. M., Chang P. K., Keller N. P. 2004. Characterization of the Aspergillus parasiticus Δ12-desaturase gene: a role for lipid metabolism in the Aspergillus-seed interaction. Microbiol. 150: 2881-2888.Google Scholar

  • Xue H. Q., Upchurch R. G., Kwanyuen P. 2008. Relationships between oleic and linoleic acid content and seed colonization by Cercospora kikuchii and Diaporthe phaseolorum. Plant Dis. 92: 1038-1042.Web of ScienceGoogle Scholar

  • Zayed S. M. E. 1997. Studies on foliar diseases of cotton. Ph.D. Thesis, Mansoura Univ., Mansoura.Google Scholar

About the article


Published Online: 2012-07-05

Published in Print: 2011-01-01


Citation Information: Biological Letters, ISSN (Online) 1734-7467, ISSN (Print) 1644-7700, DOI: https://doi.org/10.2478/v10120-011-0013-9.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in