Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Letters

The Journal of Adam Mickiewicz University, Faculty of Biology; Poznan Society for the Advancement of the Arts and Sciences

2 Issues per year

CiteScore 2016: 0.20

Open Access
See all formats and pricing
More options …

Effect of nanosilver on potato plant growth and protoplast viability

Ali Akbar Ehsanpour / Zeynab Nejati
Published Online: 2014-03-12 | DOI: https://doi.org/10.2478/biolet-2013-0004


Potato tissue culture is sensitive to ethylene accumulation in the culture vessel. Ag inhibits ethylene action but no information on nanosilver application in potato tissue culture has been published so far. In our study, potato cv. White Desiree was treated with nanosilver (0, 1.0, 1.5, and 2.0 ppm) in vitro. Leaf surface was increased, while stem length and root length decreased. Nanosilver caused also a decrease in the number of isolated protoplasts and in the viability of isolated protoplasts when applied either directly or indirectly.

Keywords: tissue culture; ethylene; nanosilver; protoplast; potato; viability; plant growth


  • Adkins S. W., Kunanuvatchaidach R., Gry S. J., Adkins A. L. 1993. Effect of ethylene and culture environment on rice callus proliferation. J. Exp. Bot. 44: 1829-1853.CrossrefGoogle Scholar

  • Adkins S.W., Magdalita P. 1994. The gaseous envelope effect of ethylene on culture performance.In: Abstracts of VIIIth International Congress of Plant Tissue and Cell Culture. June 12-17, 1994, Firenze, Italy, p. 213.Google Scholar

  • Apelbaum A., Burg S. P. 1972. Effect of ethylene on cell division and deoxyribonucleic acid synthesis in Pisum sativum. Plant Physiol. 50: 117-124.CrossrefGoogle Scholar

  • Arifa S., Subramanim S., Lawson, T., Avistunenko D., Colbeck L., Demidchik V. 2012. Nanoparticle inhibit root and leaf growth, induce generation of reactive oxygen species and trigger elevation of cytosolic calcium in Arabidopsis thaliana. In: Abstracts of Plant Biology Congress. 29 July - 3 August, 2012, Albert - Ludwigs - University Freiburg, Germany, p 296.Google Scholar

  • Batarseh K. I. 2004. Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J. Antimicrob. Chemother. 54: 546-548.CrossrefGoogle Scholar

  • Beck er R. O. 1999. Silver ions in the treatment of local infections. Met. Based Drugs 6: 297-300.Google Scholar

  • Beyer E. M. 1979. Effect of silver ion, carbon-dioxide, and oxygen on ethylene action and metabolism.Plant Physiol. 63: 169-173.PubMedCrossrefGoogle Scholar

  • Blaser S. A., Scheringer M., MacLeod M., Hungerbühler K. 2008. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles.Sci. Total Environ. 390: 396-409.Web of ScienceGoogle Scholar

  • Blum H., Beier H., Gross H. J. 1987. Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93-99.CrossrefGoogle Scholar

  • Bragg P. D., Rannie D. J. 1974. The effect of silver ions on the respiratory chain of E. coli. Can. J.Microbiol 20: 883-889.CrossrefGoogle Scholar

  • Chang H. H., Chan M. T. 1991. Improvement of potato (Solanum tuberosum L.) transformation by Agrobacterium in presence of silver thiosulphate. Bot. Bull. Acad. Sinica 32: 63-70.Google Scholar

  • Chi G. L., Pua E. C. 1989. Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brasicca campestris ssp chinensis (Chinese cabbage) in vitro. Plant Sci. 64: 243-250.CrossrefGoogle Scholar

  • Ehsanpour A. A., Jones M. G. K. 2001. Plant regeneration from mesophyll protoplasts of potato (Solanum tuberosum L.) cultivar Delaware using silver thiosulfate (STS). J. Sci. I. Rep. Iran. 12: 103-110.Google Scholar

  • Fish N., Karp A. 1986. Improvements in regeneration from protoplasts of potato and studies on chromosome stability. The effect of initial culture media. Theor. Appl. Genet. 72: 405-412.PubMedCrossrefGoogle Scholar

  • Hakan T. 2004. The effect of silver nitrate (ethylene inhibitor) on in vitro shoot development in potato (Solanum tuberosum L.). Biotechnology 3: 72-74.CrossrefGoogle Scholar

  • Kumar P. P., Lakshmanan P., Thorpe T. A. 1998. Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell. Dev. Biol. Plant. 34: 94-103.CrossrefGoogle Scholar

  • Kumar V., Ramakrishna A., Ravishankar G. A. 2007. Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cell. Dev. Biol. Plant 43: 602-607.CrossrefGoogle Scholar

  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497.CrossrefGoogle Scholar

  • Perl A., Aviv D., Galun E. 1988. Ethylene and in vitro culture of potato: suppression of ethylene generation vastly improves protoplast yield, plating efficiency and transient expression of an alien gene. Plant Cell Rep. 7: 403-406.Google Scholar

  • Ratte H. T. 1999. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol.Chem. 18: 89-108.CrossrefGoogle Scholar

  • Richards R. M. E., Taylor R. B., Xing D. K. L. 1984. Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios 39: 151-158.Google Scholar

  • Russell A. D., Hugo W. B. 1994. Antimicrobial activity and action of silver. Prog. Med. Chem. 31: 351-371.PubMedCrossrefGoogle Scholar

  • Shevchenko A., Wilm M., Vorm O., Mann M. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68: 850-858.PubMedCrossrefGoogle Scholar

  • Strader L. C., Beisner E. R., Bartel B. 2009. Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell. 21: 3585-3590.CrossrefWeb of SciencePubMedGoogle Scholar

  • Temp elaar M., Jones M. G. K. 1985. Directed electrofusion between protoplasts with different responses in a mass fusion system. Plant Cell Rep. 4: 92-95.CrossrefGoogle Scholar

  • Thurman R. B., Gerba C. P. 1989. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. CRC Crit. Rev. Environ. Control. 18: 295-315.CrossrefGoogle Scholar

  • Tsai C. M., Frasch C. E. 1982. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 119: 115-119.PubMedCrossrefGoogle Scholar

  • Veen H., van de Geijn S. C. 1978. Mobility and ionic form of silver as related to longevity of cut carnations. Planta 140: 93-96. CrossrefGoogle Scholar

  • Wells T. N., Scully P., Paravicini G., Proudfoot A. E., Payton M. A. 1995. Mechanism of irreversible inactivation of phosphomannose isomerases by silver ions and flamazine. Biochemistry 34: 896-903.CrossrefGoogle Scholar

  • Willems W. 2005. Roadmap report on nanoparticles. W&W Espana sl, Barcelona, Spain. Google Scholar

About the article

Published Online: 2014-03-12

Published in Print: 2013-06-01

Citation Information: Biological Letters, Volume 50, Issue 1, Pages 35–43, ISSN (Online) 1734-7467, ISSN (Print) 1644-7700, DOI: https://doi.org/10.2478/biolet-2013-0004.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in