Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Letters

The Journal of Adam Mickiewicz University, Faculty of Biology; Poznan Society for the Advancement of the Arts and Sciences

2 Issues per year

CiteScore 2016: 0.20

Open Access
See all formats and pricing
More options …

Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation

Ewa Gajewska
  • Corresponding author
  • Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Ł ódź, Banacha 12/16, 90-237 Łódź, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Drobik
  • Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Ł ódź, Banacha 12/16, 90-237 Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marzena Wielanek
  • Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Ł ódź, Banacha 12/16, 90-237 Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Sekulska-Nalewajko
  • Institute of Applied Computer Science, Łódź University of Technology, Stefanowskiego 18/22, 90-924 Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jarosław Gocławski
  • Institute of Applied Computer Science, Łódź University of Technology, Stefanowskiego 18/22, 90-924 Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janusz Mazur
  • Laboratory of Computer and Analytical Techniques, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Skłodowska
  • Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Ł ódź, Banacha 12/16, 90-237 Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-12 | DOI: https://doi.org/10.2478/biolet-2013-0008


Hydroponically grown wheat seedlings were treated with 50 μM N i and/or 15 μM Se. After a 7-day culture period, their growth parameters, N i, Se, F e, and M g contents, electrolyte leakage, photosynthetic pigment concentrations, and photochemical activity of photosystem II were determined. Exposure of wheat seedlings to N i alone resulted in reduction in the total shoot and root lengths, by 22% and 50%, respectively. Addition of Se to the N i-containing medium significantly improved the growth of these organs, compared to the seedlings subjected to N i alone. Application of Se decreased the accumulation of N i in shoots and roots and partially alleviated the N i-induced decrease in F e and M g concentations in shoots. Electrolyte leakage increased in response to N i stress, but in shoots it was diminished by Se supplementation. Exposure to N i led to a decrease in chlorophyll a and b contents and enhancement of chlorophyll a/b ratio, but did not influence the concentration of carotenoids. Enrichment of the N i-containing medium with Se significantly increased chlorophyll b content, compared to the seedlings treated with N i alone. Photochemical activity, estimated in terms of the maximum quantum yield of photosystem II , decreased in response to N i treatment but was significantly improved by simultaneous addition of Se. Results of our study suggest that alleviation of N i toxicity in wheat seedlings by Se supplementation may be related to limitation of N i uptake.

Keywords: chlorophyll; electrolyte leakage; nickel stress; photochemical activity; selenium


  • Abdel-Basset R., Issa A. A., Adam M. S. 1995. C hlorophyllase activity: effects of heavy metals and calcium. Photosynthetica 31: 421-425.Google Scholar

  • Cho U.-H., Park J.-O. 2000. M ercury-induced oxidative stress in tomato seedlings. Plant Sci. 156: 1-9.Google Scholar

  • Drążkiewicz M., Baszyński T. 2010. I nterference of nickel with the photosynthetic apparatus of Zea mays. E cotoxicol. E nviron. Safe. 73: 982-986.Google Scholar

  • Fargašovǎ A. 1998. R oot growth inhibition, photosynthetic pigments production, and metal accumulation in Sinapis alba as the parameters for trace metals effect determination. Bull. E nviron. C ontam. Toxicol. 61: 762-769.Google Scholar

  • Feng R., Wei C., Tu S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. E xp. Bot. 87: 58-68.Web of ScienceGoogle Scholar

  • Filek M., Keskinen R., Hartikainen H., Szarejko I., Janiak A., Miszalski Z., Golda A. 2008. The protective role of selenium in rape seedlings subjected to cadmium stress. J . Plant Physiol. 165: 833-844.Web of ScienceGoogle Scholar

  • Filek M., Gzyl-Malcher B., Zembala M., Bednarska E., Laggner p., Kriechbaum M. 2010. E ffect of selenium on characteristics of rape chloroplasts modified by cadmium. J . Plant Physiol. 167: 28-33.Web of ScienceGoogle Scholar

  • Gajewska E., Skłodowska M. 2007. E ffect of nickel on RO S content and antioxidative enzyme activities in wheat leaves. BioMetals 20: 27-36.Web of ScienceGoogle Scholar

  • Gajewska E., Skłodowska M. 2009. N ickel-induced changes in nitrogen metabolism in wheat shoots. J . Plant Physiol. 166: 1034-1044.Google Scholar

  • Gajewska E., Bernat P., Długoński J., Skłodowska M. 2012. E ffect of nickel on membrane integrity, lipid peroxidation and fatty acid composition in wheat seedlings. J . Agron. C rop Sci. 198: 286-294.Google Scholar

  • Gocławski J., Sekulska-Nalewajko J., Gajewska E., Wielanek M. 2009. An automatic root length measurement of wheat seedlings from hydroponic culture using the methods of image processing and analysis. Automatyka 13: 831-847 (in Polish).Google Scholar

  • Hawrylak B., Matraszek R., Szymańska M. 2007. R esponse of lettuce (Lactuca sativa L.) to selenium in nutrient solution contaminated with nickel. V eg. C rops R es. Bull. 67: 63-70.Google Scholar

  • Hasanuzzaman M., Hossain M. A., Fujita M. 2010. Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. J . Plant Sci. 5: 354-375.Google Scholar

  • Hasanuzzaman M., Hossain M. A., Fujita M. 2012. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol. Trace E lem. R es. 149: 248-261.Web of ScienceGoogle Scholar

  • He P. P., Lu X. Z., Wang G. Y. 2004. E ffects of Se and Z n supplementation on the antagonism against Pb and C d in vegetables. E nviron. I nt. 30: 167-172.Google Scholar

  • Kong L., Wang M., Bi D. 2005. Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant G rowth Regul. 45: 155-163.Google Scholar

  • Kumar M., Bijo A. J., Baghel R. S., Reddy C. R. K., Jha B. 2012. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DN A methylation. Plant Physiol. Biochem. 51: 129-138.Web of ScienceGoogle Scholar

  • Llamas A., Sanz A. 2008. O rgan-distinctive changes in respiration rates of rice plants under nickel stress. Plant G rowth R egul. 54: 63-69.Google Scholar

  • Llamas A., Ull rich C. I., Sanz A. 2008. N i2+ toxicity in rice: E ffect on membrane functionality and plant water content. Plant Physiol. Biochem. 46: 905-910.Web of ScienceCrossrefGoogle Scholar

  • Malik J. A, Goel S., Kaur N., Sharma S., Singh I., Nayyar H. 2012. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus R oxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. E nviron. E xp. Bot. 77: 242-248.Web of ScienceGoogle Scholar

  • Marsh H . V . J r., E vans H . J ., M atrone G . 1963. I nvestigations of the role of iron in chlorophyll metabolism. II . E ffect of iron deficiency on chlorophyll synthesis. Plant Physiol. 38: 638-642.Google Scholar

  • Marschner H. 1995. M ineral nutrition of higher plants. Academic Press, London.Google Scholar

  • Molas J. 1997. C hanges in morphological and anatomical structure of cabbage (Brassica oleracea L.) outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica 34: 513-522. CrossrefGoogle Scholar

  • Ouzounidou G., Moustakas M., Symeonidis L., Karataglis S. 2006. R esponse of wheat seedlings to N i stress: effects of supplemental calcium. Arch. E nviron. C ontam. Toxicol. 50: 346-352.Google Scholar

  • Pandey N., Sharma C. P. 2002. E ffect of heavy metals C o2+, N i2+ and C d2+ on growth and metabolism of cabbage. Plant Sci. 163: 753-758.Google Scholar

  • Pedrero Z., Madrid Y., Hartikainen H., Cámara C. 2008. Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J . Agric. F ood C hem. 56: 266-271.Google Scholar

  • Pennanen A., Xue T., Hartikainen H. 2002. Protective role of selenium in plant subjected to severe UV irradiation stress. J . Appl. Bot. 76: 66-76.Google Scholar

  • Popova L. P., Maslenkova L. T., Yordanova R. Y., Ivanova A. P., Krantev A. P., Szalai G., Janda T. 2009. E xogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings.Plant Physiol. Biochem. 47: 224-231.Web of ScienceGoogle Scholar

  • Sekulska-Nalewajko J., Gocławski J. 2011. An image analysis method for the automatic measurement of selected morphological features of wheat shoots. Automatyka 15: 243-257.Google Scholar

  • Shanker K., Mishra S., Srivastava S., Srivatava R., Dass S., Prakash S., Srivastava M. M. 1996. Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bull. E nviron.C ontam. Toxicol. 56: 419-424.Google Scholar

  • Sheoran I. S., Singal H. R., Singh R. 1990. E ffect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth. R es. 23: 345-351.Google Scholar

  • Srivastava S., Shanker K., Srivatava R., Srivastava S., Dass S., Prakash S., Srivastava M. M. 1998. E ffect of selenium supplementation on the uptake and translocation of chromium in spinach (Spinacea oleracea). Bull. E nviron. C ontam. Toxicol. 60: 750-758.Google Scholar

  • Szymańska M., Matraszek R. 2005. R eaction of the sunflower (Helianthus annuus L.) to nickel conditioned by the way of metal penetration. Acta Sci. Pol. H ortorum C ultus 4: 139-152. The Mathworks Inc. 2011a. I mage processing toolbox user’s guide, http://www.mathworks.com/help/toolbox/images Google Scholar

  • The Mathworks Inc. 2011b. ME X-files guide, http://www.mathworks.com/support/technotes/1600/1605.html Google Scholar

  • Velikova V., Tsonev T., Loreto F., Centritt o M. 2011. C hanges in photosynthesis, mesophyll conductance to CO 2, and isoprenoid emissions in Populus nigra plants exposed to nickel stress. Environ. Pollut. 159: 1058-1066.Google Scholar

  • Watkinson J. H. 1966. F luorometric determination of selenium in biological material with 2,3-diaminonaphthalene. Anal. C hem. 38: 92-97. Wellb urn A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J . Plant Physiol. 144: 307-313.Google Scholar

  • Xue T., Hartikainen H., Piironen V. 2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237: 55-61.Google Scholar

  • Zembala M., Filek M., Walas S., Mrowiec H., Kornaś A., Miszalski Z., Hartikainen H. 2010. Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329: 457-468. Web of ScienceGoogle Scholar

About the article

Published Online: 2014-03-12

Published in Print: 2013-12-01

Citation Information: Biological Letters, Volume 50, Issue 2, Pages 65–78, ISSN (Online) 1734-7467, ISSN (Print) 1644-7700, DOI: https://doi.org/10.2478/biolet-2013-0008.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Margarita G. Skalnaya, Sumit K. Jaiswal, Ranjana Prakash, N. Tejo Prakash, Andrei R. Grabeklis, Irina V. Zhegalova, Feng Zhang, Xiong Guo, Alexey A. Tinkov, and Anatoly V. Skalny
Biological Trace Element Research, 2017
Ritika Rajpoot, Anjana Rani, Rajneesh Kumar Srivastava, Poonam Pandey, and R. S. Dubey
Protoplasma, 2016, Volume 253, Number 6, Page 1449
Renwei Feng, Guojian Liao, Junkang Guo, Ruigang Wang, Yingming Xu, Yongzhen Ding, Liangyu Mo, Zhilian Fan, and Ningyu Li
Environmental and Experimental Botany, 2016, Volume 122, Page 29
Hassan R. El-Ramady, Neama Abdalla, Tarek Alshaal, Ahmed S. Elhenawy, Mohamed S. Shams, Salah E.-D. A. Faizy, El-Sayed B. Belal, Said A. Shehata, Mohamed I. Ragab, Megahed M. Amer, Miklós Fári, Attila Sztrik, József Prokisch, Dirk Selmar, Ewald Schnug, Elizabeth A. H. Pilon-Smits, Samia M. El-Marsafawy, and Éva Domokos-Szabolcsy
Environmental Chemistry Letters, 2015, Volume 13, Number 4, Page 359
Dan Han, Shuanglian Xiong, Shuxin Tu, Jinchang Liu, and Cheng Chen
Environmental and Experimental Botany, 2015, Volume 117, Page 12

Comments (0)

Please log in or register to comment.
Log in