Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 61, Issue 18 (Sep 2006)

Issues

Chemical composition of the Tatra Mountain lakes: Recovery from acidification

Jiří Kopáček
  • Hydrobiological Institute, Academy of Sciences of the Czech Republic, and Faculty of Biological Sciences, University of South Bohemia, Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
  • Email:
/ Evžen Stuchlík
  • Hydrobiological Station, Institute for Environmental Studies, Faculty of Science, Charles University in Prague, P.O. Box 47, CZ-38801, Blatná, Czech Republic
  • Email:
/ David Hardekopf
  • Hydrobiological Station, Institute for Environmental Studies, Faculty of Science, Charles University in Prague, P.O. Box 47, CZ-38801, Blatná, Czech Republic
  • Email:
Published Online: 2006-09-01 | DOI: https://doi.org/10.2478/s11756-006-0117-6

Abstract

Ninety-one lakes distributed along the Tatra Mountains (most of lakes > 1 ha and 65% of lakes > 0.01 ha) were sampled and analysed for ionic and nutrient composition in September 2004 (15 years after reduction in acid deposition). Eighty-one lakes were in alpine zone and ten lakes in Norway spruce forest. The results were compared to similar lake surveys from 1994 (the beginning of water recovery from acidification) and 1984 (maximum acidification). Atmospheric deposition of SO42− and inorganic N decreased 57% and 35%, respectively, in this region from the late 1980s to 2000. Lake water concentrations of SO42− and NO3− have decreased both by ∼50% on average (to 23 and 19 μmol L−1, respectively, in 2004) since 1984. While the decrease in SO42− concentrations was stable throughout 1984–2004, most of the NO3− decrease occurred from 1994 to 2004. The declines in SO42− and NO3− concentrations depended on catchment coverage with vegetation, being most rapid for SO42− in forest lakes and for NO3− in rocky lakes. Concentrations of the sum of base cations (dominated by Ca2+) significantly decreased between 1984 and 2004, with the highest change in rocky lakes. Most of this decline occurred between 1994 and 2004. Acid neutralising capacity (ANC) did not change in the 1984–1994 period, but increased on average by 29 μmol L−1 between 1994 and 2004, with the highest change in rocky lakes. Over the last decade, the proportion of lakes with ANC > 150 μmol L−1 increased from 15% to 21% and that of ANC < 20 μmol L−1 decreased from 37% to 20%. The highest decline in H+ and Al concentrations occurred in the most acid lakes. On a regional basis, no significant change was observed for total phosphorus, total organic nitrogen, and dissolved organic carbon (DOC) in the 1994–2004 period. However, these parameters increased in forest lakes, which exhibited an increasing trend in DOC concentrations, inversely related (P < 0.001) to their decreasing ionic strength (30% on average in 1994–2004).

Keywords: Water chemistry; recovery from acidification; long-term trends; nutrients; chlorophyll; Slovakia; Poland

  • [1] Bombówna, M. 1965. Hydrochemical investigations of the Morskie Oko lake and the Czarny Staw lake above the Morskie Oko in the Tatra Mountains, pp. 7–11. In: Starmach, K. (ed.) Limnological Investigations in the Tatra Mountains and Dunajec River Basin, Komitet Zagospodarzovania Ziem Górskych, Zeszyt No 11, Polish Academy of Sciences, Kraków. Google Scholar

  • [2] Bombówna, M. & Wojtan, K. 1996. Zmiany skladu chemicznego wody jezior tatrzańskich na przestrzeni lat [Temporal changes in the water chemistry of the Tatra lakes], pp. 56–59. In: Krzan, Z. (ed.) Przyroda Tatrzanskiego Parku Narodowego a Czlowiek, Tom 3, Wplyw czlowieka, TPN, Kraków-Zakopane, Poland. Google Scholar

  • [3] Chomitz, K. & Šamaj, F. 1974. Zrážkové pomery [Precipitation characteristics], pp. 443–536. In: Konček, M. et al. (eds) Klíma Tatier, Veda, Bratislava. Google Scholar

  • [4] Donahue, W.F., Schindler, D.W., Page, S.J. & Stainton, M.P. 1998. Acid-induced changes in DOC quality in an experimental whole-lake manipulation. Environ. Sci. Technol. 32: 2954–2960. http://dx.doi.org/10.1021/es980306uCrossrefGoogle Scholar

  • [5] Dougan, W.K. & Wilson, A.L. 1974. The absorptiometric determination of aluminium in water. A comparison of some chromogenic reagents and the development of an improved method. Analyst 99: 413–430. http://dx.doi.org/10.1039/an9749900413CrossrefGoogle Scholar

  • [6] Driscoll, C.T. 1984. A procedure for the fractionation of aqueous aluminum in dilute acidic waters. Int. J. Environ. Anal. Chem. 16: 267–284. CrossrefGoogle Scholar

  • [7] Driscoll, C.T. & Postek, K.M. 1996. The chemistry of aluminum in surface waters, pp. 363–418. In: Sposito, G. (ed.) The environmental chemistry of aluminum, Lewis Publishers, Chelsea. Google Scholar

  • [8] Evans, C.D., Cullen, J.M., Alewell, C., Marchetto, A., Moldan, F., Kopáček, J., Prechetel, A., Rogora, M., Veselý, J. & Wright, R.F. 2001. Recovery from acidification in European surface waters. Hydrol. Earth Syst. Sci. 5: 283–297. CrossrefGoogle Scholar

  • [9] Evans, C.D. & Monteith, D.T. 2001. Chemical trends at lakes and streams in the UK Acid Waters Monitoring Network, 1988–2000: Evidence for recent recovery at a national scale. Hydrol. Earth Syst. Sci. 5: 351–366. Google Scholar

  • [10] Fott, J., Pražáková, M., Stuchlík, E. & Stuchlíková, Z. 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274: 37–47. http://dx.doi.org/10.1007/BF00014625CrossrefGoogle Scholar

  • [11] Golterman, H.L. & Clymo, R.S. 1969. Methods for chemical analysis of fresh waters. Blackwell, Oxford, 172 pp. Google Scholar

  • [12] Gorek, A. & Kahan, Š. 1973. Prehľad geologického vývoja a stavby Vysokých Tatier [Review of the geological development and structure of the High Tatra Mountains]. Zborník TANAP 15: 5–88. Google Scholar

  • [13] Gregor, V. & Pacl, J. 2005. Hydrológia tatranských jazier [Hydrology of the Tatra Mountain lakes]. Acta Hydrologica Slovaca 6: 161–187. Google Scholar

  • [14] Hecky, R.E., Campbell, P. & Hendzel, L.L. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724. http://dx.doi.org/10.4319/lo.1993.38.4.0709CrossrefGoogle Scholar

  • [15] Hejzlar, J. & Kopáček, J. 1990. Determination of Low Chemical Oxygen Demand Values in Water by the Dichromate Semi-micro Method. Analyst 115: 1463–1467. http://dx.doi.org/10.1039/an9901501463CrossrefGoogle Scholar

  • [16] Henriksen, A., Mill, W.A., Kot, M., Rzychon, D. & Wathne, B. 1992. Critical loads of acidity to surface waters: A case study from the Polish Tatra Mountains. Report 29/1992, NIVA, Oslo, 34 pp. Google Scholar

  • [17] Kamenik, C., Schmidt, R., Kum, G. & Psenner, R. 2001. The influence of catchment characteristics on the water chemistry of mountain lakes. Arct. Antarct. Alp. Res. 33: 404–409. http://dx.doi.org/10.2307/1552549CrossrefGoogle Scholar

  • [18] Konček, M. & Orlicz, M. 1974. Teplotné pomery [Temperature characteristics], pp. 89–179. In: Konček, M. et al. (eds) Klíma Tatier, Veda, Bratislava. Google Scholar

  • [19] Kopáček, J., Borovec, J., Hejzlar, J., Kotorová, I., Stuchlík, E. & Veselý, J. 2006a. Chemical composition of modern and pre-acidification sediments in the Tatra Mountain lakes. Biologia, Bratislava 61,Suppl. 18: S65–S76. Google Scholar

  • [20] Kopáček, J., Hardekopf, D., Majer, M., Pšenáková, P., Stuchlík, E. & Veselý, J. 2004a. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland. J. Limnol. 63: 143–156. CrossrefGoogle Scholar

  • [21] Kopáček, J. & Hejzlar, J. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53: 173–183. CrossrefGoogle Scholar

  • [22] Kopáček, J., Hejzlar, J., Kaňa, J., Porcal, P. & Klementová, Š. 2003. Photochemical, chemical, and biological transformations of dissolved organic carbon and its impact on alkalinity production in acidified lakes. Limnol. Oceanogr. 48: 106–117. Google Scholar

  • [23] Kopáček, J., Hejzlar, J. & Mosello, R. 2000a. Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. Water Res. 34: 3598–3606. http://dx.doi.org/10.1016/S0043-1354(00)00109-3CrossrefGoogle Scholar

  • [24] Kopáček, J., Kaňa, J. & Šantrůčková, H. 2006b. Pools and composition of soils in the alpine zone of the Tatra Mountains. Biologia, Bratislava 61,Suppl. 18: S35–S49. Google Scholar

  • [25] Kopáček, J., Kaňa, J., Šantrůčková, H., Picek, T. & Stuchlík, E. 2004b. Chemical and biochemical characteristics of alpine soils in the Tatra Mountains and their correlation with lake water quality. Water Air Soil Poll. 153: 307–327. http://dx.doi.org/10.1023/B:WATE.0000019948.23456.14CrossrefGoogle Scholar

  • [26] Kopáček, J. & Procházková, L. 1993. Semi-micro determination of ammonia in water by the rubazoic acid method. Int. J. Environ. Anal. Chem. 53: 243–248. CrossrefGoogle Scholar

  • [27] Kopáček, J. & Stuchlík, E. 1994. Chemical characteristics of lakes in the High Tatra Mountains, Czechoslovakia. Hydrobiologia 274: 49–56. http://dx.doi.org/10.1007/BF00014626CrossrefGoogle Scholar

  • [28] Kopáček, J., Stuchlík, E., Straškrabová, V. & Pšenáková, P. 2000b. Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshwater Biol. 43: 369–383. http://dx.doi.org/10.1046/j.1365-2427.2000.00569.xCrossrefGoogle Scholar

  • [29] Kopáček, J., Stuchlík, E., Veselý, J., Schaumburg, J., Anderson, I.C., Fott, J., Hejzlar, J. & Vrba, J. 2002. Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water Air Soil Poll., Focus 2: 91–114. http://dx.doi.org/10.1023/A:1020190205652CrossrefGoogle Scholar

  • [30] Kopáček, J., Veselý, J. & Stuchlík, E. 2001. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850–2000). Hydrol. Earth Syst. Sci. 5: 391–405. CrossrefGoogle Scholar

  • [31] Lajczak, A. 1996. Hydrologia [Hydrology], pp. 169–196. In: Mirek, Z., Głowaciński, Z., Klimek, K. & Piękoś-Mirkowa H. (eds) Przyroda Tatrzańskiego Parku Narodowego, Tatrzański Park Narodowy, Zakopane-Kraków. Google Scholar

  • [32] Majer, V., Krám, P. & Shanley, J.B. 2005. Rapid regional recovery from sulfate and nitrate pollution in streams of the western Czech Republic — comparison to other recovering areas. Environ. Poll. 135: 17–28. http://dx.doi.org/10.1016/j.envpol.2004.10.009CrossrefGoogle Scholar

  • [33] Marchetto, A., Mosello, R., Psenner, R., Bendetta, G., Boggero, A., Tait, D. & Tartari G.A. 1995. Factors affecting water chemistry of alphine lakes. Aquat. Sci. 57: 81–89. http://dx.doi.org/10.1007/BF00878028CrossrefGoogle Scholar

  • [34] Moldan, B. 1991. Atmospheric deposition: A biogeochemical process, Academia, Praha, 108 pp. Google Scholar

  • [35] Nalewajko, C., & Paul, B. 1985. Effects of manipulations of aluminum concentrations and pH on phosphate uptake and photosynthesis of planktonic communities in two Precambrian Schield lakes. Can. J. Fish. Aquat. Sci. 42: 1946–1953. CrossrefGoogle Scholar

  • [36] Nemčok, J., Bezák, V., Janák, M., Kahan, Š., Ryja, W., Kohút, M., Lehotský, I., Wieczorek, J., Zelman, J., Mello, J., Halouzka, R., Raczkowski, W. & Reichwalder, P. 1993. Vysvetlivky ku geologickej mape Tatier [Explanation of the Geological map of the Tatra Mountains]. Geologický ústav Dionýza Štúra, Bratislava, 135 pp. Google Scholar

  • [37] Pelíšek, J. 1973a. Vertical soil zonality in the Carpathians of Czechoslovakia. Geoderma 9: 193–211. http://dx.doi.org/10.1016/0016-7061(73)90058-XCrossrefGoogle Scholar

  • [38] Pelíšek, J. 1973b. Pôdne pomery Tatranského národného parku [Soil conditions of the Tatra National Park]. Zborník TANAP 15: 145–180. Google Scholar

  • [39] Procházková, L. 1959. Bestimmung der Nitrate im Wasser. Z. Anal. Chem. 167: 254–260. http://dx.doi.org/10.1007/BF00458786CrossrefGoogle Scholar

  • [40] Procházková, L. 1960. Einfluss der Nitrate und Nitrite auf die Bestimmung des organischen Stickstoffs und Ammoniums im Wasser. Arch. Hydrobiol. 56: 179–185. Google Scholar

  • [41] Psenner, R. & Catalan, J. 1994. Chemical composition of lakes in crystaline basins: a combination of atmospheric deposition, geologic background, biological activity and human action, pp. 255–314. In: Margalef, R. (ed.) Limnology now: A paradigm of planetary problems, Elsevier Science, Amsterdam. Google Scholar

  • [42] Reuss, J.O., Cosby, B.J. & Wright, R.F. 1987. Chemical processes governing soil and water acidification. Nature 329: 27–32. http://dx.doi.org/10.1038/329027a0CrossrefGoogle Scholar

  • [43] Schöpp, W., Posch, M., Mylona, S. & Johansson, M. 2003. Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrol. Earth Syst. Sci. 7: 436–446. CrossrefGoogle Scholar

  • [44] Stangenberg, M. 1938. Zur Hydrochemie der Tatraseen. Verh. Int. Verein. Limnol. 8: 211–220. Google Scholar

  • [45] Stuchlík, E., Kopáček, J., Fott, J. & Hořická, Z. 2006. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia, Bratislava 61,Suppl. 18: S11–S20. Google Scholar

  • [46] Stuchlík, E., Stuchlíková, Z., Fott, J., Růžička, L. & Vrba, J. 1985. Vliv kyselých srážek na vody na území Tatranského národního parku [Effect of acid precipitation on waters of the TANAP territory]. Zborník TANAP 26: 173–211. Google Scholar

  • [47] Szaflarski, J. 1936. Morfometria jezior tatrzańskich; Cz. I. Jeziora Tatr Polskich [Morphology of the Tatra Mountain lakes; Part I. Lakes of the Polish Tatra Mountains]. Wiadomości Słužby Geograficznej, Warszawa 1: 1–37. Google Scholar

  • [48] Šporka, F., Livingstone, D.M., Stuchlík, E., Turek, J. & Galas, J. 2006. Water temperatures and ice cover in lakes of the Tatra Mountains. Biologia, Bratislava 61,Suppl. 18: S77–S90. Google Scholar

  • [49] Veselý, J., Majer, V., Kopáček, J. & Norton S.A. 2003. Increasing temperature decreases aluminum concentrations in Central European lakes recovering from acidification. Limnol. Oceanogr. 48: 2346–2354. http://dx.doi.org/10.4319/lo.2003.48.6.2346CrossrefGoogle Scholar

  • [50] Veselý, J., Majer, V. & Norton, S.A. 2002. Heterogeneous response of central European streams to decreased acidic atmospheric deposition. Environ. Poll. 120: 275–281. http://dx.doi.org/10.1016/S0269-7491(02)00150-1CrossrefGoogle Scholar

  • [51] Vološčuk, I. (ed.) 1994. Tatranský národný park [Tatra National Park]. Gradus, Slovakia, 551 pp. Google Scholar

  • [52] Wetzel, R.G. 2001. Limnology. 3rd ed., Academic Press, New York, 1006 pp. Google Scholar

  • [53] Wright, R.F., Larssen, T., Camarero, L., Cosby, B.J., Ferrier, R.C., Helliwell, R., Forsius, M., Jenkins, A., Kopáček, J., Majer, V., Moldan, F., Posch, M., Rogora, M. & Schöpp, W. 2005. Recovery of acidified European surface waters. Environ. Sci. Technol. 39(3): 64A–72A. http://dx.doi.org/10.1021/es0531778CrossrefGoogle Scholar

About the article

Published Online: 2006-09-01

Published in Print: 2006-09-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-006-0117-6.

Export Citation

© 2006 Institute of Zoology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in