Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 61, Issue 18

Issues

Radiometric dating of sediment records from mountain lakes in the Tatra Mountains

Peter Appleby / Gayane Piliposian
Published Online: 2006-09-01 | DOI: https://doi.org/10.2478/s11756-006-0119-4

Abstract

Sediment cores from nine different lakes in the Tatra Mountains, collected as part of the EU funded AL:PE, MOLAR and EMERGE projects investigating natural environmental records stored in remote mountain lake sediment sequences, were dated radiometrically by 210Pb and 137Cs. At five sites, Długi Staw Gąsienicowy and Zielony Staw Gąsienicowy on the Polish side of the Tatra Mountains and Starolesnianske pleso, Nižné Terianske pleso, and L’adové pleso on the Slovak side of the Tatra Mountains, the cores were sectioned at close intervals and analysed in detail to produce a high resolution chronology. For the remaining four sites, Zmarzly Staw Gąsienicowy (Poland), and Vel’ké Hincovo pleso, Vyšné Temnosmrečinské pleso, Vyšné Wahlenbergovo pleso (Slovakia), it was sufficient to establish a low resolution sketch chronology and only a few samples were analysed from each core. At L’adové pleso, multiple cores were collected in order to establish spatial distribution of sediments over the bed of the lake. Cores from all sites had good records of the fallout radionuclides from which it was possible to construct reliable chronologies of the recent sediments.

Keywords: Sediment records; mountain lakes; 210Pb dating; artificial radionuclides; Slovakia; Poland

  • [1] Appleby, P.G. 2000. Radiometric dating of sediment records in European mountain lakes. J. Limnol. 59,Suppl. 1: 1–14. Google Scholar

  • [2] Appleby, P.G. 2001. Chronostratigraphic techniques in recent sediments, pp. 171–203. In: Last, W.M. & Smol, J.P. (eds) Developments in paleoenvironmental research. Volume 1, Tracking environmental change using lake sediments: Physical and chemical techniques. Kluwer Academic Publisher, Dordrecht. Google Scholar

  • [3] Appleby, P.G., Nolan, P.J., Gifford, D.W., Godfrey, M.J., Oldfield, F., Anderson, N.J. & Battarbee, R.W. 1986. 210Pb dating by low background gamma counting. Hydrobiologia 141: 21–27. http://dx.doi.org/10.1007/BF00026640CrossrefGoogle Scholar

  • [4] Appleby, P.G. & Oldfield, F. 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8. http://dx.doi.org/10.1016/S0341-8162(78)80002-2CrossrefGoogle Scholar

  • [5] Appleby, P.G. & Oldfield, F. 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29–35. http://dx.doi.org/10.1007/BF00028424CrossrefGoogle Scholar

  • [6] Appleby, P.G. & Piliposian, G.T. 2004. Efficiency corrections for variable sample height in well-type germanium gamma detectors. Nucl. Inst. & Methods B 225: 423–433. http://dx.doi.org/10.1016/j.nimb.2004.05.020CrossrefGoogle Scholar

  • [7] Appleby, P.G., Richardson, N. & Nolan, P.J. 1991. 241Am dating of lake sediments. Hydrobiologia 214: 35–42. http://dx.doi.org/10.1007/BF00050929CrossrefGoogle Scholar

  • [8] Appleby, P.G., Richardson, N. & Nolan, P.J. 1992. Self-absorption corrections for well-type germanium detectors. Nucl. Inst. & Methods B 71: 228–233. http://dx.doi.org/10.1016/0168-583X(92)95328-OCrossrefGoogle Scholar

  • [9] Battarbee, R.W., Grytnes, J.-A., Thompson, R., Appleby, P.G., Catalan, J., Korhola, A., Birks, H.J.B., Heegaard, E. & Lami, A. 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J. Paleolimnol. 28: 161–179. http://dx.doi.org/10.1023/A:1020384204940CrossrefGoogle Scholar

  • [10] Goldberg, E.D. 1963. Geochronology with 210Pb, pp. 121–131. In: Radioactive Dating, International Atomic Energy Agency, Vienna. Google Scholar

  • [11] Krishnaswami, S., Lal, D., Martin, J.M. & Meybeck, M. 1971. Geochronology of lake sediments. Earth Planet. Sci. Lett. 11: 407–414. http://dx.doi.org/10.1016/0012-821X(71)90202-0CrossrefGoogle Scholar

  • [12] Oldfield, F. & Appleby, P.G. 1984. Empirical testing of 210Pb dating models, pp. 93–124. In: Haworth, E.Y. & Lund, J.G. (eds) Lake sediments and environmental history, Leicester Univ. Press. Google Scholar

  • [13] Pennington, W., Cambray, R.S. & Fisher, E.M. 1973. Observations on lake sediments using fallout 137Cs as a tracer. Nature 242: 324–326. http://dx.doi.org/10.1038/242324a0CrossrefGoogle Scholar

  • [14] Piliposian, G. & Appleby, P.G. 2003. A model of the impact of winter ice cover on pollutant concentrations and fluxes in mountain lakes. Water, Air, Soil Poll. 44: 101–115. http://dx.doi.org/10.1023/A:1022994812659CrossrefGoogle Scholar

  • [15] Plöger, A. 2005. Measuring and modelling of trace metals and radionuclides in mountain lake systems. PhD Thesis, University of Liverpool. Google Scholar

  • [16] Robbins, J.A. 1978. Geochemical and geophysical applications of radioactive lead, pp. 285–393. In: Nriagu, J.O. (ed.) Biogeochemistry of lead in the environment, Elsevier Scientific, Amsterdam. Google Scholar

  • [17] Šporka, F., Štefková, E., Bitušík, P., Thompson, A.R., Agusti-Panareda, A., Appleby, P.G., Grytnes, J.A., Kamenik, C., Krno, I., Lami, A., Rose, N. & Shilland, N.E. 2002. The palaeolimnological analysis of sediments from high mountain lake Nizne Terianske pleso in the high Tatras (Slovakia). J. Paleolimnol. 28: 95–109. http://dx.doi.org/10.1023/A:1020376003123CrossrefGoogle Scholar

  • [18] Wathne, B.M., Patrick, S.T., Monteith, D. & Barth, H. (eds) 1995. AL: PE 1 Report for the period April 1991–April 1993. European Commission DGXII, Luxembourg, 292 pp. Google Scholar

About the article

Published Online: 2006-09-01

Published in Print: 2006-09-01


Citation Information: Biologia, Volume 61, Issue 18, Pages S51–S64, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-006-0119-4.

Export Citation

© 2006 Institute of Zoology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Handong Yang and Peter G. Appleby
Scientific Reports, 2016, Volume 6, Number 1
[2]
Elyse V. Clark, Ben K. Odhiambo, and Matthew C. Ricker
Water, Air, & Soil Pollution, 2014, Volume 225, Number 2
[3]
Katarzyna Szarlowicz and Barbara Kubica
Journal of Radioanalytical and Nuclear Chemistry, 2014, Volume 299, Number 3, Page 1321
[4]
Katarzyna Szarlowicz, Witold Reczynski, Ryszard Misiak, and Barbara Kubica
Journal of Radioanalytical and Nuclear Chemistry, 2013, Volume 298, Number 2, Page 1323
[5]
Barend L. van Drooge, Joan O. Grimalt, and Evzen Stuchlík
Environmental Science and Pollution Research, 2013, Volume 20, Number 9, Page 6594
[6]
Barend L. van Drooge, Jordi López, Pilar Fernández, Joan O. Grimalt, and Evzen Stuchlík
Environmental Pollution, 2011, Volume 159, Number 5, Page 1234
[7]
Krisztina Buczkó, Enikő Katalin Magyari, Peter Bitušík, and Agnieszka Wacnik
Hydrobiologia, 2009, Volume 631, Number 1, Page 3
[8]
Peter Bitušík, Vladimír Kubovčík, Elena Štefková, Peter G. Appleby, and Marek Svitok
Hydrobiologia, 2009, Volume 631, Number 1, Page 65

Comments (0)

Please log in or register to comment.
Log in