Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

See all formats and pricing
More options …
Volume 61, Issue 18 (Sep 2006)


Acidification and the structure of crustacean zooplankton in mountain lakes: The Tatra Mountains (Slovakia, Poland)

Zuzana Hořická
  • Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-12844, Prague 2, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Evžen Stuchlík
  • Hydrobiological Station, Institute for Environmental Studies, Faculty of Science, Charles University in Prague, P.O. Box 47, CZ-38801, Blatná, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor Hudec
  • Institute of Zoology, Slovak Academy of Sciences, Löfflerova 10, SK-04002, Košice, Slovak Republic
  • Institute of Biological and Ecological Sciences, Faculty of Science, P.J. Šafárik University, Moyzesova 11, SK-04001, Košice, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Černý
  • Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-12844, Prague 2, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Fott
  • Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-12844, Prague 2, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-09-01 | DOI: https://doi.org/10.2478/s11756-006-0125-6


Species composition of planktonic Crustacea in 102 lakes in the West and High Tatra Mountains, studied during the peak of anthropogenic acidification (1978–1996), is presented in this work. Zooplankton of the Tatra lakes have been studied since the middle of the 19th century, which later enabled the recognition of lake acidification and the assessment of its effect on the plankton community of lake ecosystems. In the pre-acidification period, the distribution of zooplankton was determined namely by the lake altitude and orientation (north vs. south) and by the catchment character. Crustacean zooplankton in larger lakes consisted of a limited number of species, with Acanthodiaptomus denticornis and Daphnia longispina dominating lakes in the forest zone, and Arctodiaptomus alpinus, Cyclops abyssorum, Daphnia longispina, Daphnia pulicaria, and Holopedium gibberum dominating lakes in the alpine zone. Ceriodaphnia quadrangula, Daphnia obtusa, Daphnia pulex, and Mixodiaptomus tatricus occurred in lakes with high concentrations of dissolved organic matter and in strongly acidified waters. Anthropogenic acidification has caused drastic changes in both the chemistry and biology of the Tatra lakes. Based on their status during the acidification peak, lakes were divided into three categories: non-acidified (with no change in the species composition of crustacean zooplankton due to the acidification), acidified (planktonic Crustacea disappeared in lakes with meadow-rocky catchments), and strongly acidified lakes where original Crustacea in meadow-rocky catchment lakes disappeared and were replaced by populations of the acid-tolerant littoral species Acanthocyclops vernalis, Chydorus sphaericus, and Eucyclops serrulatus. The acidification-induced processes of oligotrophication and toxicity of aluminium played a key role in the extinction of species. Despite the first signs of biological recovery observed in the early 2000s, acidification remains the most important factor governing the structure of plankton in the Tatra lakes.

Keywords: Zooplankton; Crustacea; phytoplankton; mountain lakes; acidification; oligotrophication; aluminium toxicity Slovakia; Poland

  • [1] Almer, B.W., Dickson, W., Ekström, C., Hörnström, E. & Miller, U. 1974. Effect of acidification on Swedish lakes. Ambio 3: 30–36. Google Scholar

  • [2] Amoros, C. 1984. Crustacés Cladocères. Bulletin Men. Soc. Linn. Lyon 53: 1–63. Google Scholar

  • [3] Brtek, J. 1977. Anostraca, Notostraca, Conchostraca a Calanoida Slovenska. 2. čast’. Acta Rer. Natur. Mus. Nat. Slov., Bratislava 23: 117–150. Google Scholar

  • [4] Catalan, J., Ventura, M., Brancelj, A., Granados, I., Thies, H., Nickus, U., Korhola, A., Lotter, A.F., Barbieri, A., Stuchlík, E., Lien, L., Bitušík, P., Buchaca, T., Camarero, L., Goudsmit, G.H., Kopáček, J., Lemcke, G., Livingstone, D.M., Müller, B., Rautio, M., Šiško, M., Sorvari, S., Šporka, F., Strunecký, O. & Toro, M. 2002. Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J. Paleolimnol. 28: 25–46. http://dx.doi.org/10.1023/A:1020315817235Google Scholar

  • [5] Colbourne, J.K., Crease, T.J., Weider, L.J., Hebert, P.D.N., Dufresne, F. & Hobæk, A. 1998. Phylogenetics and evolution of a circumarctic species complex (Cladocera: Daphnia pulex). Biol. J. Linn. Soc. 65: 347–365. http://dx.doi.org/10.1006/bijl.1998.0251Google Scholar

  • [6] Černý, M. 1995. Genetic variation in temperate populations of Daphnia pulex group. PhD Thesis, Charles University, Prague, Czech Republic, 88 pp. Google Scholar

  • [7] Černý, M. & Hebert, P.D.N. 1999. Intercontinental allozyme differentiation among four holarctic Daphnia species. Limnol. Oceanogr. 44: 1381–1387. Google Scholar

  • [8] Dargocká, J., Kneslová, P. & Stuchlík, E. 1997. Fytoplanktón niektorých rôzne acidifikovaných plies Vysokých Tatier [Phytoplankton of several high mountain lakes in different stage of acidification, the High Tatra Mountains, Slovakia]. Štúdie TANAP 2: 41–62. Google Scholar

  • [9] Dickson, W. 1980. Properties of acidified waters, pp. 75–83. In: Proc. Int. Conf. Ecol. Impact Acid Precip., SNSF-project. Oslo, Norway. Google Scholar

  • [10] Einsle, U. 1996. Copepoda: Cyclopoida. Genera Cyclops, Megacyclops, Acanthocyclops. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. H.J.F. Dumont, ed., Vol. 10. SPB Academic Publishing bv, New York and Amsterdam, 83 pp. Google Scholar

  • [11] Ertl, M. 1963. Príspevok k poznaniu zimného zooplanktónu Štrbského plesa [Contribution to the knowledge of winter zooplankton of Štrbské pleso lake]. Biológia, Bratislava 18: 787–791. Google Scholar

  • [12] Ertl, M. & Vranovský, M. 1964. Zooplanktón Popradského plesa [Zooplankton of Popradské pleso lake]. Biológia, Bratislava 19: 675–689. Google Scholar

  • [13] Ertl, M., Juriš, Š. & Vranovský, M. 1965. K poznaniu planktónu Vel’kého a Malého Hincovho plesa [To the knowledge of plankton of lakes Vel’ké-and Malé Hincovo pleso]. Zborník TANAP 8: 57–69. Google Scholar

  • [14] Flössner, D. 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden, The Netherlands, 428 pp. Google Scholar

  • [15] Fott, J., Blažo, M., Stuchlík, E. & Strunecký, O. 1999. Phytoplankton in three Tatra Mountain lakes of different acidification status. J. Limnol. 58: 107–116. Google Scholar

  • [16] Fott, J., Pražáková, M., Stuchlík, E. & Stuchlíková, Z. 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274: 37–47. http://dx.doi.org/10.1007/BF00014625Google Scholar

  • [17] Fott, J., Stuchlík, E. & Stuchlíková, Z. 1987. Acidification of lakes in Czechoslovakia, pp. 77–79. In: Moldan, B. & Pačes, T. (eds) Extended abstracts of the International workshop on geochemistry and monitoring in representative basins, Geological Survey, Prague. Google Scholar

  • [18] Fott, J., Stuchlík, E., Stuchlíková, Z., Straškrabová, V., Kopáček, J. & Šimek, K. 1992. Acidification of lakes in Tatra Mountains (Czechoslovakia) and its ecological consequences. Doc. Ist. Ital. Idrobiol. 32: 69–81. Google Scholar

  • [19] Gliwicz, Z.M. 1963. Wpływ zarybienia na biocenozy jezior tatrzańskich. Chrońmy Przyr. Ojcz. 5: 27–35. Google Scholar

  • [20] Gliwicz, Z.M. & Rowan, M.G. 1984. Survival of Cyclops abyssorum tatricus (Copepoda, Crustacea) in alpine lakes stocked with planktivorous fish. Limnol. Ocenaogr. 29: 1290–1299. http://dx.doi.org/10.4319/lo.1984.29.6.1290Google Scholar

  • [21] Grahn, O., Huldberg, H. & Landner, L. 1974. Oligotrofication — a self-accelerating process in lakes subjected to excessive supply of acid substances. Ambio 3: 93–94. Google Scholar

  • [22] Hobæk, A. & Weider, L.J. 1999. A circumpolar study of Arctic biodiversity: Phylogeographic patterns in the Daphnia pulex complex. Ambio 28: 245–250. Google Scholar

  • [23] Hrbáček, J. 1959. Über die angebliche Variabilität von Daphnia pulex Leydig. Zool. Anz. 162: 118–125. Google Scholar

  • [24] Hrbáček, J., Brtek, J., Vranovský, M. & Štěrba, O. 1974. Zooplanktón a význační zástupcovia niektorých skupín drobného vodného živočíšstva tatranských plies [Zooplankton and significant representatives of some groups of small water animals in Tatra lakes]. Zborník TANAP 16: 105–109. Google Scholar

  • [25] Juriš, Š., Ertl, M., Ertlová, E. & Vranovský, M. 1965. Niektoré poznatky z hydrobiologického výskumu Popradského plesa [Some findings of the hydrobiological research of Popradské pleso lake]. Zborník TANAP 8: 33–44. Google Scholar

  • [26] Kiefer, F. 1971. Revision der bacillifer-Gruppe der Gattung Arctodiaptomus Kiefer (Crustacea Copepoda: Calanoida). Mem. Ist. Ital. Idrobiol. 27: 113–267. Google Scholar

  • [27] Kiefer, F. 1978. Freilebende Copepoda, pp. 1–343. In: Kiefer, F. & Fryer, G. Das Zooplankton der Binnengewässer, 2. Teil, Die Binnengewässer, Band 26, E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart. Google Scholar

  • [28] Kopáček, J., Cosby, B.J., Majer, V., Stuchlík, E. & Veselý, J. 2003. Modelling reversibility of Central European mountain lakes from acidification: Part II — The Tatra Mountains. Hydrol. Earth Syst. Sci. 7: 510–524. http://dx.doi.org/10.5194/hess-7-510-2003Google Scholar

  • [29] Kopáček, J., Hardekopf, D., Majer, V., Pšenáková, P., Stuchlík, E. & Veselý, J. 2004. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland. J. Limnol. 63: 143–156. Google Scholar

  • [30] Kopáček, J., Stuchlík, E. & Hardekopf, D. 2006. Chemical composition of the Tatra Mountain lakes: Recovery from acidification. Biologia, Bratislava 61,Suppl. 18: S21–S33. Google Scholar

  • [31] Kopáček, J., Stuchlík, E., Straškrabová, V. & Pšenáková, P. 2000. Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshwat. Biol. 43: 369–383. http://dx.doi.org/10.1046/j.1365-2427.2000.00569.xGoogle Scholar

  • [32] Kopáček, J., Stuchlík, E. & Wright, R.F. 2005. Long-term trends and spatial variability in nitrate leaching from alpine catchment-lake ecosystems in the Tatra Mountains (Slovakia-Poland). Environ. Pollut. 136: 89–101. http://dx.doi.org/10.1016/j.envpol.2004.12.012Google Scholar

  • [33] Kopáček, J., Ulrich, K.-U., Hejzlar, J., Borovec, J. & Stuchlík, E. 2001. Natural inactivation of phosphorus by aluminum in atmospherically acidified water bodies. Water Res. 35: 3783–3790. http://dx.doi.org/10.1016/S0043-1354(01)00112-9Google Scholar

  • [34] Kořínek, V., Černý, M. & Petrusek, A. 2003. Daphnia obtusa Kurz, 1874: komplex kryptických druhů — nový problém populační ekologie [Daphnia obtusa Kurz, 1874: Complex of cryptic species — a new problem in population ecology], pp. 113–114. In: Bitušík, P. & Novikmec, M. (eds) Proc. 13th Conference of Slovak Limnol. Soc. & Czech Limnol. Soc., Banská Štiavnica, June 2003, Acta Facultatis Ecologiae 10. Google Scholar

  • [35] Kownacki, A., Kawecka, B., Dumnicka, E. & Galas, J. 2002. Przyczyny wyginięcia i próba restytucji gatunku Branchinecta paludosa (O.F. Müller 1788) w Tatrzańskim Parku Narodowym, pp. 297–302. In: Borowiec, W., Kotarba, A., Kownacki, A., Krzan, Z. & Mirek, Z. (eds) Przemiany środowiska przyrodniczego Tatr, Wyd. TPN, PTPNoZ Oddz. Kraków, Kraków-Zakopane. Google Scholar

  • [36] Koźmiński, Z. 1927. Über die Variabilität der Cyclopiden aus der strenuus-Gruppe auf Grund quantitativer Untersuchungen. Bull. Int. Acad. Polon. Sci. Lett. Cl. Sci. Math.-Nat., Ser. B: 1–114. Google Scholar

  • [37] Kneslová, P., Dargocká, J. & Stuchlík, E. 1997. Zooplankton osmi různě acidifikovaných ples ve Vysokých Tatrách [Zooplankton of eight High Tatra Mountain lakes in different stage of acidification]. Štúdie TANAP 2: 123–134. Google Scholar

  • [38] Křeček, J, Turek, J., Ljungren, E., Stuchlík, E. & Šporka, F. 2006. Hydrological processes in small catchments of mountain headwater lakes: The Tatra Mountains. Biologia, Bratislava 61,Suppl. 18: S1–S10. Google Scholar

  • [39] Kubíček, F. & Vlčková, D. 1954. Příspěvek k poznání zooplanktonu západní jezerní oblasti Liptovských holí [Contribution to the knowledge of zooplankton of the western lake area of the Liptovské hole Mts]. Práce Brn. Základny ČSAV 26: 21–48. Google Scholar

  • [40] Lityński, A. 1913. Revision der Cladocerenfauna der Tatra-Seen. 1. Teil Daphnidae. Bull. Acad. Sci. Cracovie, Cl. Math. Nat., Kraków, Ser. B: 566–623. Google Scholar

  • [41] Mackereth, F.J.H., Heron, J. & Talling, J.F. 1978. Water analyses: some revised methods for limnologists. FBA Scientific publications No. 36, 120 pp. Google Scholar

  • [42] Minkiewicz, S. 1914. Przegląd fauny jezior Tatrzańskich. Spraw. Kom. Fizyogr. Akad. Umiejętności, Kraków 48: 114–137. Google Scholar

  • [43] Minkiewicz, S. 1917. Die Crustaceen der Tatrassen. Eine physiographisch-faunistische Skizze. Bull. Acad. Sci. Cracovie, Cl. Math. Nat., Kraków, Ser. B: 262–278. Google Scholar

  • [44] Nilssen, J.P. & Wærvågen, S.B. 2003. Ecological distribution of pelagic copepods and species relationship to acidification, liming and natural recovery in a boreal area. J. Limnol. 62: 97–114. Google Scholar

  • [45] Petrusek, A., Bastiansen, F. & Schwenk, K. 2005. European Daphnia Species (EDS) — Taxonomic and genetic keys. [Build 2006-01-12 beta]. CD-ROM, distributed by the authors. Department of Ecology and Evolution, J.W. Goethe-University, Frankfurt am Main, Germany & Department of Ecology, Charles University, Prague, Czech Republic. Google Scholar

  • [46] Pšenáková, P. 1997. Mechanizmy ovlivňující koncentraci fosforu v acidifikovaných jezerech [Mechanisms influencing phosphorus concentration in acidified lakes]. PhD Thesis, Přírodovědecká fakulta Univerzity Karlovy, Praha, 80 pp. Google Scholar

  • [47] Strickland, J.D.H. & Parsons, T.R. 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Can., 167 pp. Google Scholar

  • [48] Stuchlík, E., Appleby, P., Bitušík, P., Curtis, C., Fott, J., Kopáček, J., Pražáková, M., Rose, N., Strunecký, O. & Wright, R.F. 2002. Reconstruction of long-term changes in lake water chemistry, zooplankton and benthos of a small, acidified high-mountain lake: MAGIC modelling and palaeolimnological analysis. Water Air Soil Pollut., Focus 2: 127–138. Google Scholar

  • [49] Stuchlík, E., Kopáček, J., Fott, J. & Hořická, Z. 2006. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia, Bratislava 61,Suppl. 18: S11–S20. Google Scholar

  • [50] Stuchlík, E., Stuchlíková, Z., Fott, J., Růžička, L. & Vrba, J. 1985. Vliv kyselých srážek na vody na území tatranského národního parku [Effect of acid precipitation on waters of the TANAP territory]. Zborník TANAP 26: 173–211. Google Scholar

  • [51] Stuchlíková, Z., Stuchlík, E. & Fott, J. 1985. Acidifikace a plankton jezer ve Vysokých Tatrách [Acidification and plankton of lakes in the High Tatra Mountains], pp. 229–232. In: Sborník referátů VII. celostátní konference ČSLS při ČSAV „Poznávanie, kvalitatívne a kvantitatívne hodnotenie vodných ekosystémov“, Nitra. Google Scholar

  • [52] Šporka, F., Livingstone, D.M., Stuchlík, E., Turek, J. & Galas, J. 2006. Water temperatures and ice cover in lakes of the Tatra Mountains. Biologia, Bratislava 61,Suppl. 18: S77–S90. Google Scholar

  • [53] Šrámek-Hušek, R. 1953. Naši klanonožci. Nakladatelství Československé akademie věd, Praha, 63 pp. Google Scholar

  • [54] Šrámek-Hušek, R., Straškraba, M. & Brtek, J. 1962. Lupenonožci — Branchiopoda. Fauna ČSSR 16. Nakladatelství Československé akademie věd, Praha, 472 pp. Google Scholar

  • [55] Vranovský, M. 1991. Qualitative changes in the planktonic Cladocera assemblage of a High Tatra Mountains lake during the last 100 years. Hydrobiologia 225: 319–323. http://dx.doi.org/10.1007/BF00028410Google Scholar

  • [56] Vranovský, M., Krno, I., Šporka, F. & Tomajka, J. 1994. The effect of anthropogenic acidification on the hydrofauna of the lakes of the West Tatra Mountains (Slovakia). Hydrobiologia 274: 163–170. http://dx.doi.org/10.1007/BF00014639Google Scholar

  • [57] Vyhnálek, V., Fott, J. & Kopáček, J. 1994. Chlorophyllphosphorus relationship in acidified lakes of the High Tatra Mountains (Slovakia). Hydrobiologia 274: 49–56. http://dx.doi.org/10.1007/BF00014640Google Scholar

  • [58] Wierzejski, A. 1881. O faune jezior tatrzańskich. Pam. Tow. Tatrz. 6: 99–110. Google Scholar

  • [59] Woźniczka, K. 1965. The zooplankton of the Valley of the Five Polish lakes in the Tatra Mountains, pp. 19–31. In: Starmach, K. (ed.) Limnological investigations in the Tatra Mountains and Dunajec River Basin, Kom. Zagosp. Ziem górsk., Zeszyt No. 11, Polish Academy of Sciences, Kraków. Google Scholar

About the article

Published Online: 2006-09-01

Published in Print: 2006-09-01

Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-006-0125-6.

Export Citation

© 2006 Institute of Zoology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

János Korponai, Katalin A. Varga, Timea Lengré, István Papp, Albert Tóth, and Mihály Braun
Hydrobiologia, 2011, Volume 676, Number 1, Page 237
János Korponai, Enikő Katalin Magyari, Krisztina Buczkó, Sanda Iepure, Tadeusz Namiotko, Dániel Czakó, Csilla Kövér, and Mihály Braun
Hydrobiologia, 2011, Volume 676, Number 1, Page 223
Freshwater Biology, 2011, Volume 56, Number 11, Page 2299
Eva Hamrová, Joachim Mergeay, and Adam Petrusek
BMC Evolutionary Biology, 2011, Volume 11, Number 1
Eva Hamrová, Viktor Goliáš, and Adam Petrusek
Hydrobiologia, 2010, Volume 643, Number 1, Page 97
Miroslava Pražáková, Josef Veselý, Jan Fott, Vladimír Majer, and Jiří Kopáček
Biologia, 2006, Volume 61, Number 20

Comments (0)

Please log in or register to comment.
Log in