Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

See all formats and pricing
More options …
Volume 61, Issue 20


Biomass and element pools of understory vegetation in the catchments of Čertovo Lake and Plešné Lake in the Bohemian Forest

Miroslav Svoboda
  • Faculty of Forestry and Environment, Czech University of Agriculture in Prague, Kamýcká 129, CZ-16521, Praha 6 — Suchdol, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karel Matějka / Jiří Kopáček
  • Biology Centre, Academy of Sciences of the Czech Republic, Institute of Hydrobiology, Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-12-01 | DOI: https://doi.org/10.2478/s11756-007-0074-8


This paper presents data on species composition, biomass, and element pools (C, N, P, Ca, Mg, Na, K, Al, Fe, Mn) of the understory vegetation of spruce forests in the catchments of lakes Čertovo jezero (CT) and Plešné jezero (PL) in the Bohemian Forest (Šumava, Czech Republic). Calamagrostis villosa was the most abundant species in the CT catchment, while Vaccinium myrtillus was the most abundant species in the PL catchment. The catchments weighted mean (CWM) of above-ground biomass of the understory vegetation was 288 and 723 g m−2 in the CT and PL catchments, respectively. The significant difference in the biomass between the catchments was caused by the much higher abundance of V. myrtillus in the PL catchment. The CWM of below-ground biomass of the fine roots was 491 and 483 g m−2 in the CT and PL catchments, respectively. The respective CWM element pools of biomass in the CT and PL catchments were: C (33 and 51 mol m−2), N (0.8 and 1.0 mol m−2), P (24 and 34 mmol m−2), Ca (53 and 113 mmol m−2), Mg (24 and 41mmol m−2), Na (3.7 and 6.5 mmol m−2), K (83 and 109 mmol m−2), Al (50 and 42 mmol m−2), Fe (13.3 and 7.3 mmol m−2), and Mn (4.2 and 8.8 mmol m−2).

Keywords: Norway spruce forest; understory vegetation; Calamagrostis villosa; Vaccinium myrtillus

  • [1] Chapin, F.S. & Aerts, R. 2000. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv. Ecol. Res. 30: 1–67. Google Scholar

  • [2] Fiala, K., Jakrlová, J. & Zelená, V. 1989. Biomass partitioning in two Calamagrostis villosa stands on deforested sites. Folia Geobot. 24: 207–210. CrossrefGoogle Scholar

  • [3] Fiala, K., Tůma, I., Holub, P. & Jandák, J. 2005. The role of Calamagrostis communities in preventing soil acifitication and base cation losses in a deforested mountain area affected by acid deposition. Plant Soil 268: 35–49. http://dx.doi.org/10.1007/s11104-004-0185-8CrossrefGoogle Scholar

  • [4] Fiedler, H.J. & Hohne, H. 1987. Biomass production and nutrient content of Calamagrostis villosa (Chaix) J. F. Gmelin in a spruce forest. Flora 179: 109–123. Google Scholar

  • [5] Finer, L., Mannerkoski, H., Piirainen, S. & Starr, M. 2003. Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. For. Ecol. Manag. 174: 51–63. http://dx.doi.org/10.1016/S0378-1127(02)00019-1CrossrefGoogle Scholar

  • [6] George, L.O. & Bazzaz, F.A. 1999. The fern understory as an ecological filter: emergence and establishment of canopy-tree seedlings. Ecology 80: 833–845. Google Scholar

  • [7] Gerdol, R., Anfodillo, T., Gualmini, M., Cannone, N., Luca, B. & Brancaleoni, L. 2004. Biomass distribution of two subalpine dwarf-shrubs in relation to soil moisture and nutrient content. J. Veg. Sci. 15: 457–464. http://dx.doi.org/10.1658/1100-9233(2004)015[0457:BDOTSD]2.0.CO;2CrossrefGoogle Scholar

  • [8] Gerstberger, P., Foken, T. & Kalbitz, K. 2004. The Lehstenbach and Steinkreuz catchments in NE Bavaria, Germany, pp. 15–41. In: Matzner, E. (ed.) Biogeochemistry of forested catchments in a changing environment, Ecological Studies 172, Springer-Verlag, Berlin — Heidelberg. Google Scholar

  • [9] Helmisaari, H.S. 1995. Nutrient cycling in Pinus sylvestris stands in eastern Finland. Plant Soil 168–169: 327–336. http://dx.doi.org/10.1007/BF00029345CrossrefGoogle Scholar

  • [10] Hill, M.O. 1979. TWINSPAN — a FORTRAN program for arranging multivariate data in an ordered two way table by classification of individuals and attributes. Cornell Univ., Ithaca, 48 pp. Google Scholar

  • [11] Holeksa, J. 2003. Relationship between field-layer vegetation and canopy openings in a Carpathian subalpine spruce forest. Plant Ecol. 168: 57–67. http://dx.doi.org/10.1023/A:1024457303815CrossrefGoogle Scholar

  • [12] Holub, P. 1999. Hodnocení příjmu dusíku a jeho retranslokace travami na odlesněných plochách [Assessment of nitrogen uptake and its retranslocation by gramineous plants on the deforested land]. J. For. Sci. 45: 358–364. Google Scholar

  • [13] Huber, C., Weis, W., Buamgarten, M. & Gottlein, A. 2004. Spatial and temporal variation of seepage water chemistry after femel and small scale clear-cutting in a N-saturated Norway spruce stand. Plant Soil 267: 23–40. http://dx.doi.org/10.1007/s11104-005-2573-0CrossrefGoogle Scholar

  • [14] Husová, M., Jirásek, J. & Moravec, J. 2002. Jehličnaté lesy [Coniferous forests]. In: Moravec, J. (ed.) Přehled vegetace České republiky [Vegetation survey of the Czech Republic], Vol. 3, Academia, Praha, 128 pp. Google Scholar

  • [15] Jakrlová, J. 1996. Variability of aboveground production of Calamagrostis villosa in localities exposed to immissions in the region of Beskydy Mts, pp. 75–82. In: Fiala, K. (ed.) Grass ecosystems of deforested areas in the Beskydy Mts, Preliminary results of ecological studies, Proceedings of the workshop held in Brno, Institute of Landscape Ecology, Brno. Google Scholar

  • [16] Jankovská, V. 2006. Late Glacial and Holocene history of Plešné Lake and its surrounding landscape based on pollen and palaeoalgological analyses. Biologia, Bratislava 61,Suppl. 20: S371–S385. Google Scholar

  • [17] Jalonen, J., Vanha-Majamaa, I. & Tonteri, T. 1998. Optimal sample and plot size for inventory of field and ground layer vegetation in a mature Myrtillus-type boreal spruce forest. Ann. Bot. Fenn. 35: 191–196. Google Scholar

  • [18] Jirásek, J. 1996. Přirozené smrčiny České republiky [Natural spruce forest of the Czech republic]. Preslia 67: 225–259. Google Scholar

  • [19] Jonasson, S. & Shaver, G.R. 1999. Within-stand nutrient cycling in arctic and boreal wetlands. Ecology 80: 2139–2150. Google Scholar

  • [20] Kaňa, J. & Kopáček, J. 2006. Impact of soil sorption characteristics and bedrock composition on phosphorus concentrations in two Bohemian Forest lakes. Water Air Soil Pollut. 173: 243–259. http://dx.doi.org/10.1007/s11270-005-9065-yCrossrefGoogle Scholar

  • [21] Kaunisto, S. & Sarjala, T. 2003. Foliar pottassium concentrations of Bilberry, Bog Bilberry and Downy Birch as indicator of Potassium nutrition of Scots pine on a drained peatland. Silva Fenn. 37: 235–332. Google Scholar

  • [22] Kopáček, J., Borovec, J., Hejzlar, J. & Porcal, P. 2001. Parallel spectrophotometric determinations of iron, aluminum, and phosphorus in soil and sediment extracts. Comm. Soil Sci. Plant. 32: 1431–1443. http://dx.doi.org/10.1081/CSS-100104203CrossrefGoogle Scholar

  • [23] Kopáček, J., Kaňa, J., Šantrůčková, H., Porcal, P., Hejzlar, J., Picek, T., Šimek, M. & Veselý, J. 2002a. Physical, chemical and biological characteristics of soils in watersheds of the Bohemian Forest lakes: I. Plešné Lake. Silva Gabreta 8: 43–66. Google Scholar

  • [24] Kopáček, J., Kaňa, J., Šantrůčková, H., Porcal, P., Hejzlar, J., Picek, T., Šimek, M. & Veselý, J. 2002b. Physical, chemical and biological characteristics of soils in watersheds of the Bohemian Forest lakes: II. Čertovo and Černé Lakes. Silva Gabreta 8: 97–94. Google Scholar

  • [25] Kopáček, J., Stuchlík, E., Veselý, J., Schaumburg, J., Anderson, I.C., Fott, J., Hejzlar J. & Vrba J. 2002c. Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water Air Soil Pollut.: Focus 2: 91–114. Google Scholar

  • [26] Kopáček, J. Turek, J., Hejzlar, J., Kaňa, J. & Porcal, P. 2006a. Element fluxes in watershed-lake ecosystems recovering from acidification: Čertovo Lake, the Bohemian Forest, 2001–2005. Biologia, Bratislava 61,Suppl. 20: S413–S426. Google Scholar

  • [27] Kopáček, J., Turek, J., Hejzlar, J., Kaňa, J. & Porcal, P. 2006b. Element fluxes in watershed-lake ecosystems recovering from acidification: Plešné Lake, the Bohemian Forest, 2001–2005. Biologia, Bratislava 61,Suppl. 20: S427–S440. Google Scholar

  • [28] Kubát, K., Hrouda, L., Chrtek, J., Kaplan, Z., Kirchner, J. & Štěpánek J. (eds) 2002. Klíč ke květeně České republiky [Key to the Flora of the Czech Republic]. Academia, Praha, 928 pp. Google Scholar

  • [29] Kubíček, F., Šimonovič, V. & Szabo, J. 1989. Biomass of the herb layer and moss layer in several forest ecosystems influenced by air pollution, the Beskydy mountains (part Kysuce). Ekológia (ČSSR) 8: 23–34. Google Scholar

  • [30] Majer, V., Cosby, B.J., Kopáček, J. & Veselý, J. 2003. Modeling reversibility of Central European mountain lakes from acidification: Part I — The Bohemian Forest. Hydrol. Earth Syst. Sci. 7: 494–509. http://dx.doi.org/10.5194/hess-7-494-2003CrossrefGoogle Scholar

  • [31] Matějka, K. 1992a. A case study of mountain spruce forest — problems and comments, pp. 42–50. In: Matějka, K. (ed.) Investigation of the mountain forest ecosystems and of forest damage in the Czech Republic, Proceedings of the workshop held in České Budějovice, České Budějovice. Google Scholar

  • [32] Matějka, K. 1992b. Some aspects of the theory of the ecosystem spatial structure. I. Theory. Ekológia (ČSFR) 11: 369–377. Google Scholar

  • [33] Moravec, J. et al. 1994. Fytocenologie. Academia, Praha, 403 pp. Google Scholar

  • [34] Moravec, J., Husová, M., Chytrý, M. & Neuhäuslová, Z. 2000. Hygrofilní, mezofilní a xerofilní opadavé lesy [Hygrophilous, mesophilous and xerophilous deciduous forests]. In: Moravec, J. (ed.) Přehled vegetace České republiky [Vegetation survey of the Czech Republic], Vol. 2, Academic, Praha, 319 pp. Google Scholar

  • [35] Moravec, J., Husová, M., Neuhäusl, R. & Neuhäuslová-Novotná, Z. 1982. Die Association mesophiler und hygrophiler Laubwälder in der Tschechischen Sozialistischen Republik. Vegetace ČSSR, Ser. A, Vol. 12. Academia, Praha, 296 pp. Google Scholar

  • [36] Nilsson, M.C. & Wardle, D.A. 2005. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 8: 421–428. http://dx.doi.org/10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2CrossrefGoogle Scholar

  • [37] Nordin, A., Nasholm, T. & Ericson, L. 1998. Effects of simulated N deposition on understorey vegetation of a boreal coniferous forest. Funct. Ecol. 12: 691–699. http://dx.doi.org/10.1046/j.1365-2435.1998.00240.xCrossrefGoogle Scholar

  • [38] Odum, E.P. 1959. Fundamentals of ecology. 2nd Ed. Saunders, Philadelphia, 546 pp. Google Scholar

  • [39] Pavliainen, M., Finér, L. & Mannerkoski, H. 2005a. Response of ground vegetation species to clear-cutting in a boreal forest: aboveground biomass and nutrient contents during the first 7 years. Ecol. Res. 20: 652–660. http://dx.doi.org/10.1007/s11284-005-0078-1CrossrefGoogle Scholar

  • [40] Pavliainen, M., Finér, L., Mannerkoski, H., Piirainen, S. & Starr., M. 1995b. Changes in the above-and belowground biomass and nutrient pools of ground vegetation after clear-cutting of a mixed boreal forest. Plant Soil 275: 157–167. Google Scholar

  • [41] Pyšek, P. 1993. What do we know about Calamagrostis villosa? A review of the species behaviour in secondary habitats. Preslia 65: 1–20. Google Scholar

  • [42] Rodenkirchen, H. 1995. Nutrient pools and fluxes of the ground vegetation in coniferous forests due to fertilizing, liming and amelioration. Plant Soil 168–169: 383–390. http://dx.doi.org/10.1007/BF00029351CrossrefGoogle Scholar

  • [43] Scarascia-Mugnozza, G., Bauer, G.A. Persson, H., Matteucci, G. & Masci, A. 2000. Tree biomass, growth, and nutrient pools, pp. 49–61. In: Schulze, E.D. (ed.) Carbon and nitrogen cycling in European forest ecosystems, Ecological Studies 142, Springer-Verlag, Berlin-Heidelberg. Google Scholar

  • [44] Strengbom, J., Nordin, A., Nasholm, T. & Ericson, L. 2002. Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. J Ecol. 90: 61–67. http://dx.doi.org/10.1046/j.0022-0477.2001.00629.xCrossrefGoogle Scholar

  • [45] Strengbom, J., Walheim, M., Nasholm, T. & Ericson, L. 2003. Regional differences in the occurrence of understorey species reflect nitrogen deposition in Swedish forests. Ambio 32: 1–97. http://dx.doi.org/10.1639/0044-7447(2003)032[0091:RDITOO]2.0.CO;2CrossrefGoogle Scholar

  • [46] Strengbom, J., Nasholm, T. & Ericson, L. 2004. Light, not nitrogen, limits growth of the grass Deschampsia flexulosa in boreal forests. Can. J. Bot. 82: 430–435. http://dx.doi.org/10.1139/b04-017CrossrefGoogle Scholar

  • [47] Svoboda, M., Matějka, K., Kopáček, J. & Žaloudík, J. 2006. Estimation of tree biomass of Norway spruce forest in the Plešné Lake catchment, the Bohemian Forest. Biologia, Bratislava 61,Suppl. 20: S523–S532. Google Scholar

  • [48] Šantrůčková, H., Krištůfková, M. & Vaněk, D. 2006. Decomposition rate and nutrient release from plant litter of Norway spruce forest in the Bohemian Forest. Biologia, Bratislava 61,Suppl. 20: S499–S508. Google Scholar

  • [49] Tonje, O., Bakkestuen, V., Halvorsen, O.R. & Odd, E. 2004. Changes in forest understorey vegetation in Norway related to long-term soil acidification and climatic change. J. Veg. Sci. 15: 437–448. http://dx.doi.org/10.1658/1100-9233(2004)015[0437:CIFUVI]2.0.CO;2CrossrefGoogle Scholar

  • [50] Uotila, A. & Kouki, J. 2005. Understorey vegetation in spruce-dominated forests in eastern Finland and Russian Karelia: Successional patterns after anthropogenic and natural disturbances. For. Ecol. Manag. 215: 113–137. http://dx.doi.org/10.1016/j.foreco.2005.05.008CrossrefGoogle Scholar

  • [51] Veselý, J. 1994. Investigation of the nature of the Šumava lakes: a review. Čas. Nár. Muz. Praha, Řada Přírodověd. 163: 103–120. Google Scholar

  • [52] Viewegh, J., Kusbach, A. & Mikeska, M. 2003. Czech forest ecosystem classification. J. For. Sci. 49: 74–82. Google Scholar

  • [53] Vrba, J., Kopáček, J., Fott, J., Kohout, L., Nedbalová, L., Pražáková, M., Soldán, T. & Schaumburg, J. 2003. Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (Central Europe). Sci. Total Environ. 310: 73–85. http://dx.doi.org/10.1016/S0048-9697(02)00624-1CrossrefGoogle Scholar

  • [54] Wild, J., Neuhauslova, Z. & Sofron, J. 2004. Changes of plant species composition in the Sumava spruce forests, SW Bohemia, since the 1970s. For. Ecol. Manag. 187: 117–132. http://dx.doi.org/10.1016/S0378-1127(03)00310-4Google Scholar

About the article

Published Online: 2006-12-01

Published in Print: 2006-12-01

Citation Information: Biologia, Volume 61, Issue 20, Pages S509–S521, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-007-0074-8.

Export Citation

© 2006 Institute of Zoology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vojtěch Čada, Hana Šantrůčková, Jiří Šantrůček, Lenka Kubištová, Meelis Seedre, and Miroslav Svoboda
Frontiers in Plant Science, 2016, Volume 7
Pavel Janda, Miroslav Svoboda, Radek Bače, Vojtěch Čada, and JeriLynn E. Peck
Forest Ecology and Management, 2014, Volume 330, Page 304
Jiří Bárta, Petra Šlajsová, Karolina Tahovská, Tomáš Picek, and Hana Šantrůčková
Biogeochemistry, 2014, Volume 117, Number 2-3, Page 525
Filip Oulehle, Tomáš Chuman, Vladimír Majer, and Jakub Hruška
Biogeochemistry, 2013, Volume 116, Number 1-3, Page 83
Karolina Tahovská, Jiří Kaňa, Jiří Bárta, Filip Oulehle, Andreas Richter, and Hana Šantrůčková
Soil Biology and Biochemistry, 2013, Volume 59, Page 58
Jiří Kaňa, Karolina Tahovská, and Jiří Kopáček
Biogeochemistry, 2013, Volume 113, Number 1-3, Page 369
Miroslav Svoboda, Pavel Janda, Thomas A. Nagel, Shawn Fraver, Jan Rejzek, Radek Bače, and Paolo Cherubini
Journal of Vegetation Science, 2012, Volume 23, Number 1, Page 86
Miroslav Svoboda, Shawn Fraver, Pavel Janda, Radek Bače, and Jitka Zenáhlíková
Forest Ecology and Management, 2010, Volume 260, Number 5, Page 707
Miroslav Svoboda and Václav Pouska
Forest Ecology and Management, 2008, Volume 255, Number 7, Page 2177
Jiří Bárta, Tereza Melichová, Daniel Vaněk, Tomáš Picek, and Hana Šantrůčková
Biogeochemistry, 2010, Volume 101, Number 1-3, Page 123

Comments (0)

Please log in or register to comment.
Log in