Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 61, Issue 4


Seasonal dynamics of dry weight, growth rate and root/shoot ratio in different aged seedlings of Salix caprea

Jiří Dušek
  • Department of Ecology and Hydrobiology, Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Květ
  • Department of Ecology and Hydrobiology, Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
  • Institute of Botany, Academy of Sciences of the ČR, Dukelská 135, CZ-37982, Třeboň, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-08-01 | DOI: https://doi.org/10.2478/s11756-006-0074-0


Willows (e.g. Salix caprea L.) are deciduous and richly branched shrubs or small trees. Salix caprea shows a high adaptability to different habitat conditions. One way of evaluating this adaptability is to measure willow biomass and production. Young plants of S. caprea were sampled from the bottom of an artificial lagoon in which sediments removed from the local Vajgar fishpond were deposited. The bottom of the lagoon was overgrown by vegetation dominated by seedlings of the willows S. caprea and S. aurita. Willows grew in the lagoon at average density of 58 plants per m2. The biomass production and growth of S. caprea were determined for 15 samples (collected from 315 individuals) during the growing season. Annual net dry matter production in the whole community was estimated for 2.7 kg m−2. Willows are generally considered to be fast-growing plants. The highest RGR of willows recorded by us was 0.03 to 0.04 g g−1 d−1 both in the stems and roots. This value was often recorded from July to August.

Keywords: biomass; RGR; willows; production; fishopond deposit; Salix

  • [1] Bergman, M., Iason, G.R. & Hester, A.J. 2005. Frediny patterns by roe deer and rabbits on pine, willow and biích in retation to spatial arrangement. Oikos 109: 513–520. http://dx.doi.org/10.1111/j.0030-1299.2005.13794.xCrossrefGoogle Scholar

  • [2] Castro-Díez, P. Montserrat-Martí, G. & Cornelissen J.H.C. 2003. Trade-offs between phenology, relative growth rate, life form and seed mass among 22 Mediterranean woody species. Plant Ecology 166: 117–129. http://dx.doi.org/10.1023/A:1023209230303CrossrefGoogle Scholar

  • [3] Cleveland, W.S. 1979. Robust locally weighted regression and smoothing Scatterplots. J. Americ. Stat. Assoc. 74: 829–836. http://dx.doi.org/10.2307/2286407CrossrefGoogle Scholar

  • [4] Cleveland, W.S. 1994. Visualizing data. Hobart Press, Summit, New Jersey, U.S.A., pp.280. Google Scholar

  • [5] Dykyjová, D. & Úlehlová, B. 1978. Structure and chemistry of the fishpond bottom, pp. 141–155. In: Dykyjová, D. & Květ, J. (eds), Pond littoral ecosystems, Springer-Verlag, Berlin, Heidelberg, New York. Google Scholar

  • [6] Grime, J. P., Hodgson, J.G. & Hunt, R. 1989. Comparative plant ecology: A functional approach to common British species. Unwin Hyman, London, pp 506–507. Google Scholar

  • [7] Faliński, J.B. 1997. Declines in populations of Salix caprea L. during forest regeneration after strong herbivore pressure. Acta Soc. Bot. Pol. 66: 87–109. Google Scholar

  • [8] Hejný, B. & Slavík, S. 1990. Flora of the Czech Republic-2. Academia, Praha, pp 472–473. Google Scholar

  • [9] Hees, A.F.M., & van, Clerkx, A.P.P.M. 2003. Shanding and root-shoot telations in saplings of silver birch, pedunculate oak and beech. For. Ecol. Manage. 176: 439–448. http://dx.doi.org/10.1016/S0378-1127(02)00307-9CrossrefGoogle Scholar

  • [10] Hunt, R. 1978. Plant growth analysis. Studies in Biology No. 96, Edward Arnold, London, 246 pp. Google Scholar

  • [11] Hunt, R. 1982. Plant growth curves. Edvard Arnold, London, pp. 2–247. Google Scholar

  • [12] Klute A. (ed.) 1996. Methods of soil analysis, Part 3. Chemical methods, 2nd ed., Madison, WI., Soil Science Society of America. Google Scholar

  • [13] Kopp, R.F., White, E.H., Abrahamson, L.P., Nowak, C.A., Zsuffa, L. & Burns, K.F. 1993. Willow biomass trials in central New York State. Biomass and Bioenergy 5: 179–187. http://dx.doi.org/10.1016/0961-9534(93)90099-PCrossrefGoogle Scholar

  • [14] Kopp, R.F., Abrahamson, L.P., White, E.H., Nowak, C.A., Zsuffa, L. & Burns, K.F. 1996. Woodgrass spacing and fertilization effects on wood biomass production by a willow clone. Biomass and Bioenergy 11: 451–457. http://dx.doi.org/10.1016/S0961-9534(96)00055-4CrossrefGoogle Scholar

  • [15] Kopp, R.F., Abrahamson, L.P., White, E.H., Burns, K.F. & Nowak, C.A. 1997. Cutting cycle and spacing effect on biomass production by a willow clone in New York. Biomass and Bioenergy 12: 313–319. http://dx.doi.org/10.1016/S0961-9534(96)00077-3CrossrefGoogle Scholar

  • [16] Kuzovkina, Y.A. & Quigley, M.F. 2005. Willows betone wetlands: Uses of Salix L. species for environmental projects. Water, Air, and Soil Pollution 162: 183–204. http://dx.doi.org/10.1007/s11270-005-6272-5CrossrefGoogle Scholar

  • [17] Květ, J. & Marshall, J.K. 1971. Assessment of leaf area and other assimilating plant surface, pp 517–546. In: Šesták, Z., Čatský, J. & Jarvis, P.G. (eds), Plant photosynthetic production. Manuals of methods. Dr. W. Junk N.V. Publishers, The Hague. Google Scholar

  • [18] Květ, J., Ondok, J. P. & Nečas, J. 1971. Methods of growth analysis, pp 343–384. In:Šesták, Z., Čatský, J. & Jarvis, P.G. (eds), Plant photosynthetic production. Manuals of methods, Dr. W. Junk N.V. Publishers., The Hague. Google Scholar

  • [19] Labrecque, M. & Teodorescu, T.I. 2005. Field performance and biomass production of 12 willow and poplar clonek in short-rotation coppice in southern Quebec (Canada). Biomass and Bioenergy 29: 1–9. http://dx.doi.org/10.1016/j.biombioe.2004.12.004CrossrefGoogle Scholar

  • [20] Lambers, H. & Poorter H. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23: 187–261. http://dx.doi.org/10.1016/S0065-2504(08)60148-8CrossrefGoogle Scholar

  • [21] Lyr, F. & Garbe, V. 1995. Influence of root temperature on growth of Pinus sylvestris, Fagus sylatica, Tillia cordata and Quercus robur. Trees. 9: 316–322. http://dx.doi.org/10.1007/BF00195276CrossrefGoogle Scholar

  • [22] Martinková, M. 1976. Transpiration and growth of shoot in some species of genus Salix L. PhD. Thesis, Univ. of Agriculture, Brno, Ms., pp.1–192. Google Scholar

  • [23] Madsen, P. 1994. Growth and survival of Fagus sylvatica seedlings in relation to light intensity and soil water content. Scand. J. For. Res. 9: 316–322. http://dx.doi.org/10.1080/02827589409382846CrossrefGoogle Scholar

  • [24] Minotta, G. & Pinzauti, S. 1996. Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. For. Ecol. Manage 86: 661–671. http://dx.doi.org/10.1016/S0378-1127(96)03796-6CrossrefGoogle Scholar

  • [25] Pokorný, J. & Hauser, V. 1994. Restoration of lakes through sediment removal — Vajgar fish pond, Czech Republic, pp. 141–153. In: Eiseltová, M. (ed.), Restoration of lake ecosystems. IWRB Publication No. 32, Slinbridge, UK. Google Scholar

  • [26] Prach, K., Květ, J. & Ostrý, I. 1987. Ecological analysis of the vegetation in a summer drained fishpond. Folia Geobot. Phytotax., Praha, 22: 43–70. Google Scholar

  • [27] Renand, P.C., Verheyden-Tixier, H. & Dumont, B. 2003. Damage to saplings by red deer (Servus elaphus): Effect of foliage height and structure. Forest Ecol. Management 181: 31–37. http://dx.doi.org/10.1016/S0378-1127(03)00126-9CrossrefGoogle Scholar

  • [28] Sauter, J.J. & Wellenkamp, S. 1998. Seasonal changes in content of starch, protein and sugars in the twing wood of Salix caprea L. Holzforschung 52: 255–262. http://dx.doi.org/10.1515/hfsg.1998.52.3.255CrossrefGoogle Scholar

  • [29] Tharakan, P.J., Volk, T.A., Nowak, C.A. & Abrahamson, L.P. 2005. Morphological traits of 30 willow clones and their relationship to biomass production. Can. J. Forest Research-revue 35: 421–431. http://dx.doi.org/10.1139/x04-195CrossrefGoogle Scholar

About the article

Published Online: 2006-08-01

Published in Print: 2006-08-01

Citation Information: Biologia, Volume 61, Issue 4, Pages 441–447, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-006-0074-0.

Export Citation

© 2006 Institute of Botany, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Laura Radville, M. Luke McCormack, Eric Post, and David M. Eissenstat
Journal of Experimental Botany, 2016, Volume 67, Number 12, Page 3617
Benedetto Rugani, Katarzyna Golkowska, Ian Vázquez-Rowe, Daniel Koster, Enrico Benetto, and Pieter Verdonckt
Applied Energy, 2015, Volume 156, Page 449
Plant, Cell & Environment, 2015, Volume 38, Number 9, Page 1850
Catherine Bonin, Rattan Lal, Matthias Schmitz, and S. Wullschleger
Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 2012, Volume 62, Number 7, Page 595
Mirosław Mleczek, Paweł Rutkowski, Iwona Rissmann, Zygmunt Kaczmarek, Piotr Golinski, Kinga Szentner, Katarzyna Strażyńska, and Agnieszka Stachowiak
Biomass and Bioenergy, 2010, Volume 34, Number 9, Page 1410

Comments (0)

Please log in or register to comment.
Log in