Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year




Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 61, Issue 5

Issues

Leaf breakdown patterns in a NW Italian stream: Effect of leaf type, environmental conditions and patch size

Stefano Fenoglio / Tiziano Bo / Marco Cucco / Giorgio Malacarne
Published Online: 2006-10-01 | DOI: https://doi.org/10.2478/s11756-006-0090-0

Abstract

We studied the decomposition process and macroinvertebrate colonisation of leaf packs to determine to what extent leaf consumption and invertebrate abundance depend on the pollution level, season, leaf type and patch size. We exposed 400 leaf packs made of two leaf types, alder and chestnut, at two sites of the Erro River (NW Italy) with different environmental alteration levels. Leaf packs were set out as three patch sizes (alone, or in groups of 6 or 12). A first experiment was carried out in winter and a second in summer. Leaf packs were retrieved after 15, 30, 45 and 60 days of submersion to determine the leaf mass loss and to quantify the associated macroinvertebrates. Natural riverbed invertebrates were collected in the same areas. Patch size, season, leaf type and pollution level significantly affected mass loss. The breakdown process was faster for alder leaves, during summer, at the unpolluted site, and in smaller patches. Leaf type and patch size did not affect macroinvertebrate density and richness, but the highest taxon richness was found in winter and at the unpolluted site. There were more shredders and predators than in the natural riverbed. Our study supports two recent ideas regarding leaf processing in streams: that patch size influences the leaf breakdown rate and that the breakdown rate can be used to evaluate water quality and environmental health.

Keywords: Packs; benthic invertebrates; allochthonous inputs; pollution; patch size

  • [1] Allan, J.D. 1995. Stream ecology. Structure and function of running waters. Chapman & Hall, London, 388 pp. Google Scholar

  • [2] Canhoto, C. & Graça, M.A.S. 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshwater Biol. 34: 209–214. http://dx.doi.org/10.1111/j.1365-2427.1995.tb00881.xCrossrefGoogle Scholar

  • [3] Carlisle, D.M. & Clements, W.H. 2005. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams. Freshwater Biol. 50: 380–390. http://dx.doi.org/10.1111/j.1365-2427.2004.01323.xCrossrefGoogle Scholar

  • [4] Casas, J.J. & Gessner, M.O. 1999. Leaf litter breakdown in a Mediterranean stream characterised by travertine precipitation. Freshwater Biol. 41: 781–793. http://dx.doi.org/10.1046/j.1365-2427.1999.00417.xCrossrefGoogle Scholar

  • [5] Clarke, K.D. & Scruton, D.A. 1997. The benthic community of stream riffles in Newfoundland, Canada and its relationship to selected physical and chemical parameters. J. Anim. Ecol. 12: 113–121. Google Scholar

  • [6] Cuffney, T.F., Wallace, J.B. & Lugthart, G.J. 1990. Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshwater Biol. 23: 281–299. http://dx.doi.org/10.1111/j.1365-2427.1990.tb00272.xCrossrefGoogle Scholar

  • [7] Cummins, K.W. 1979. The natural stream ecosystem, pp. 7–24. In: Ward, J.W. & Stanford, J.A. The ecology of regulated streams, Plenum Press, New York. Google Scholar

  • [8] Cummins, K.W., Wilzbach, M.A., Gates, D.M., Perry J.B. & Taliaferro, W.B. 1989. Shredders and riparian vegetation. BioScience 39: 24–30. http://dx.doi.org/10.2307/1310804CrossrefGoogle Scholar

  • [9] Dobson, M., Magana, A., Mathooko, J.M. & Ngdegwa, F.K. 2002. Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biol. 47: 909–919. http://dx.doi.org/10.1046/j.1365-2427.2002.00818.xCrossrefGoogle Scholar

  • [10] Fabre, E. & Chauvet, E. 1998. Leaf breakdown along an altitudinal stream gradient. Arch. Hydrobiol. 141: 167–179. Google Scholar

  • [11] Fenoglio, S., Agosta, P., Bo, T. & Cucco, M. 2002. Field experiments on colonization and movements of stream invertebrates in an Apennine river (Visone, NW Italy). Hydrobiologia 474: 125–130. http://dx.doi.org/10.1023/A:1016525315671CrossrefGoogle Scholar

  • [12] Fenoglio, S., Bo, T. & Cucco, M. 2004a. Small-scale macroinvertebrate distribution in a neotropical rainforest stream. Caribb. J. Sci. 40: 253–257. Google Scholar

  • [13] Fenoglio, S., Bo, T., Gallina, G. & Cucco, M. 2004b. Vertical distribution in the water column of drifting stream macroinvertebrates. J. Freshwater Ecol. 19: 485–492. CrossrefGoogle Scholar

  • [14] Fenoglio, S., Bo, T., Agosta P. & Cucco, M. 2005. Mass loss and macroinvertebrate colonisation of fish carcasses in riffles and pools of a NW Italian stream. Hydrobiologia 532: 111–122. http://dx.doi.org/10.1007/s10750-004-9451-2CrossrefGoogle Scholar

  • [15] Gauch, H.G. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge, 298 pp. Google Scholar

  • [16] Gessner, M.O. & Chauvet, E. 2002. A case for using litter breakdown to assess functional stream integrity. Ecol. Appl. 12: 498–510. Google Scholar

  • [17] Gessner, M.O., Chauvet, E. & Dobson, M. 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384. CrossrefGoogle Scholar

  • [18] Ghetti, P.F. 1997. Manuale di applicazione Indice Biotico Esteso (I.B.E.), i macroinvertebrati nel controllo della qualitŕ degli ambienti di acque correnti. Provincia Autonoma di Trento, Trento, 222 pp. Google Scholar

  • [19] Giller, P.S. & Malmqvist, B. 1998. The biology of streams and rivers. Oxford University Press, Oxford, 304 pp. Google Scholar

  • [20] Grubaugh, J.W. & Wallace, J.B. 1995. Functional structure and production of the benthic community in a Piedmont river: 1956–1957 and 1991–1992. Limnol. Oceanogr. 40: 490–501. http://dx.doi.org/10.4319/lo.1995.40.3.0490CrossrefGoogle Scholar

  • [21] Hieber, M. & Gessner, M.O. 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83: 1026–1038. Google Scholar

  • [22] Irons, J.G., Oswood, M.W. & Bryant, J.P. 1988. Consumption of leaf detritus by a stream shredder: influence of tree species and nutrient status. Hydrobiologia 160: 53–61. Google Scholar

  • [23] Irons, J.G., Oswood, M.W., Stout, R.J. & Pringle, C.M. 1994. Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshwater Biol. 32: 401–411. http://dx.doi.org/10.1111/j.1365-2427.1994.tb01135.xCrossrefGoogle Scholar

  • [24] Jonsson, M. & Malmqvist, B. 2000. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89: 519–523. http://dx.doi.org/10.1034/j.1600-0706.2000.890311.xCrossrefGoogle Scholar

  • [25] Jonsson, M., Malmqvist, B. & Hoffsten, P.O. 2001. Leaf breakdown rates in boreal streams: does shredder species richness matter? Freshwater Biol. 46: 161–171. http://dx.doi.org/10.1046/j.1365-2427.2001.00655.xCrossrefGoogle Scholar

  • [26] Kaushik, N.K. & Hynes, H.B.N. 1971. The fate of the dead leaves that fall into streams. Arch. Hydrobiol. 68: 465–515. Google Scholar

  • [27] Maamri, A., Chauvet, E., Chergui, H., Gourbière F. & Pattee, E. 1998a. Microbial dynamics on decaying leaves in a temporary Moroccan river. I — Fungi. Arch. Hydrobiol. 144: 41–59. Google Scholar

  • [28] Maamri, A., Chauvet, E., Chergui, H., Gourbière F. & Pattee, E. 1998b. Microbial dynamics on decaying leaves in a temporary Moroccan river. I — Bacteria. Arch. Hydrobiol. 144: 157–175. Google Scholar

  • [29] Mathuriau, C. & Chauvet, E. 2002. Breakdown of leaf litter in a neotropical stream. J. N. Am. Benthol. Soc. 21: 384–396 http://dx.doi.org/10.2307/1468477CrossrefGoogle Scholar

  • [30] Merritt, R.W. & Cummins, K.W. 1996. An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque, IO, USA, 860 pp. Google Scholar

  • [31] Mulholland, P.J., Elwood, J.W., Newbold, J.D. & Ferren, L.A. 1985. Effect of a leaf-shredding invertebrate on organic matter dynamics and phosphorus spiralling in heterotrophic laboratory streams. Oecologia 66: 199–206. Google Scholar

  • [32] Murphy, J., Giller, P.S. & Horan, M.A. 1998. Spatial scale and the aggregation of stream macroinvertebrates associated with leaf packs. Freshwater Biol. 39: 325–339. http://dx.doi.org/10.1046/j.1365-2427.1998.00284.xCrossrefGoogle Scholar

  • [33] Niyogi, D.K., Lewis, W.M. & McKnight, D.M. 2001. Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecol. Appl. 11: 506–516. Google Scholar

  • [34] Pascoal, C., Pinho, M., Cassio, F. & Gomes, P. 2003. Assessing structural and functional ecosystem condition using leaf breakdown: a study in a polluted river. Freshwater Biol. 48: 2033–2044. http://dx.doi.org/10.1046/j.1365-2427.2003.01130.xCrossrefGoogle Scholar

  • [35] Pattee, E., Bornard, C. & Mourelatos, S. 1986. La decomposition des feuilles mortes dans le réseau fluvial du Rhone: influence du milieu et principaux agents responsables. Sciences de l’Eau 5: 45–74. Google Scholar

  • [36] Pattee, E., Maamri, A. & Chergui, H. 2000. Leaf litter processing and its agents in a temporary Moroccan river. Verh. Int. Verein. Limnol. 27: 3054–3057 Google Scholar

  • [37] Podani, J. 1997. SYN-TAX 5.1 A new version for PC and Macintosh computers. Coenoses 12: 149–152. Google Scholar

  • [38] Power, M.E. & Dietrich, W.E. 2002. Food webs in river networks. Ecol. Res. 17: 451–471. http://dx.doi.org/10.1046/j.1440-1703.2002.00503.xCrossrefGoogle Scholar

  • [39] Pretty, J.L., Giberson, D.J. & Dobson, M., 2005. Resource dynamics and detritivore production in an acid stream. Freshwater Biol. 50: 578–591. http://dx.doi.org/10.1111/j.1365-2427.2005.01341.xCrossrefGoogle Scholar

  • [40] Richardson, J.S., 1992. Food, microhabitat or both? Macroinvertebrate use of leaf accumulations in a montane stream. Freshwater Biol. 27: 169–176. http://dx.doi.org/10.1111/j.1365-2427.1992.tb00531.xCrossrefGoogle Scholar

  • [41] Royer, T.V. & Minshall, G.W. 1997. Rapid breakdown of allochthonous and autochthonous plant material in a eutrophic river. Hydrobiologia 344: 81–86. http://dx.doi.org/10.1023/A:1002902327258CrossrefGoogle Scholar

  • [42] Royer, T.V. & Minshall, G.W. 2003. Controls of leaf processing in streams form spatial-scaling and hierarchical perspectives. J. N. Am. Benthol. Soc. 22: 352–358. CrossrefGoogle Scholar

  • [43] Sokal, R.R. & Rohlf, F.I. 1969. Biometry: the principles and practice of statistics in biological research. San Francisco: W.H. Freeman, Department of Ecology and Evolution, State University of New York, Stony Brook, NY, 128 pp. Google Scholar

  • [44] Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. & Cushing, C.E. 1980. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37: 130–137. http://dx.doi.org/10.1139/f80-017CrossrefGoogle Scholar

  • [45] Wallace, J.B., Eggert, S.L., Meyer, J.L. & Webster, J.R. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104. http://dx.doi.org/10.1126/science.277.5322.102CrossrefGoogle Scholar

  • [46] Webster, J.R. & Benfield, E.F. 1986. Vascular plant breakdown in freshwater ecosystems. Ann. Rev. Ecol. Syst. 17: 567–594. http://dx.doi.org/10.1146/annurev.es.17.110186.003031CrossrefGoogle Scholar

  • [47] Wilkinson, L. 1992. SYSTAT Version 8.0. Systat Inc. Evanston, Illinois, 1086 pp. Google Scholar

About the article

Published Online: 2006-10-01

Published in Print: 2006-10-01


Citation Information: Biologia, Volume 61, Issue 5, Pages 555–563, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-006-0090-0.

Export Citation

© 2006 Institute of Zoology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Renato T. Martins, Adriano S. Melo, José F. Gonçalves, and Neusa Hamada
Freshwater Science, 2015, Volume 34, Number 2, Page 716
[3]
Tiziano Bo, Massimo Cammarata, Manuel Jesus López-Rodríguez, Josè Manuel Tierno De Figueroa, and Stefano Fenoglio
Polish Journal of Ecology, 2014, Volume 62, Number 2, Page 217
[4]
Antonio Di Sabatino, Giovanni Cristiano, Maurizio Pinna, Paola Lombardo, Francesco Paolo Miccoli, Gabriele Marini, Patrizia Vignini, and Bruno Cicolani
Ecological Indicators, 2014, Volume 46, Page 84

Comments (0)

Please log in or register to comment.
Log in