Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 62, Issue 3

Issues

Fluorescence in situ hybridisation

Martina Lakatošová / Beáta Holečková
Published Online: 2007-06-01 | DOI: https://doi.org/10.2478/s11756-007-0043-2

Abstract

Fluorescence in situ hybridisation (FISH) is a rapid and reliable technique for chromosomal investigations that is used for a wide variety of cytogenetic purposes at present. This molecular-cytogenetic method has been developed continuously for many years. As a consequence, various modifications with different kinds of fluorescently labelled probes have been introduced to optimise the detection of DNA and RNA sequences. This review articlepaper presents the general principles of in situ hybridisation, probe labelling and examples of proper use of different kinds of probes. In addition, some newer FISH methods and their usefulness in human molecular cytogenetics are described.

Keywords: fluorescence in situ hybridisation; probes; chromosomal investigations

  • [1] Albertson D.G. & Pinkel D. 2003. Genomic microarrays in human genetic disease and cancer. Hum. Mol. Genet. 12: 145–152. http://dx.doi.org/10.1093/hmg/ddg261CrossrefGoogle Scholar

  • [2] Antson D.O, Mendel-Harwig M., Landegren U. & Nilsson M. 2003. PCR-generated padlock probes distinguish homologous chromosomes through quantitative fluorescence analysis. Eur. J. Hum. Genet. 11: 357–363. http://dx.doi.org/10.1038/sj.ejhg.5200966CrossrefGoogle Scholar

  • [3] Bacino C.A., Kashork C.D., Davino N.A. & Shaffer L.G. 2000. Detection of a cryptic translocation in a family with mental retardation using FISH and telomere region-specific probes. Am. J. Med. Genet. 92: 250–255. http://dx.doi.org/10.1002/(SICI)1096-8628(20000605)92:4<250::AID-AJMG5>3.0.CO;2-8CrossrefGoogle Scholar

  • [4] Balif B.C., Kashork C.D. & Shaffer L.G. 2000. FISHing for mechanisms of cytogenetically defined terminal deletions using chromosome-specific subtelomeric probes. Eur. J. Hum. Genet. 8: 764–770. http://dx.doi.org/10.1038/sj.ejhg.5200536CrossrefGoogle Scholar

  • [5] Bauman J.G.J., Wiegant J., Borst P. & van Duijn P. 1980. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp. Cell Res. 128: 485–490. http://dx.doi.org/10.1016/0014-4827(80)90087-7CrossrefGoogle Scholar

  • [6] Bayani J.M. & Squire J.A. 2001. Advances in the detection of chromosomal aberrations using spectral karyotyping. Clin. Genet. 59: 65–73. http://dx.doi.org/10.1034/j.1399-0004.2001.590201.xCrossrefGoogle Scholar

  • [7] Bayani J.M. & Squire J.A. 2002. Applications of SKY in cancer cytogenetics. Cancer Invest. 20: 373–386. http://dx.doi.org/10.1081/CNV-120001183CrossrefGoogle Scholar

  • [8] Bolzan A.D. & Bianchi M.S. 2006. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat. Res. 612: 189–214. http://dx.doi.org/10.1016/j.mrrev.2005.12.003CrossrefGoogle Scholar

  • [9] Bonassi S., Ugolini D., Kirsch-Volders M., Strömberg U., Vermeulen R. & Tucker J.D. 2005. Human population studies with cytogenetic biomarkers: Review of the literature and future prospectives. Environ. Mol. Mutagen. 45: 258–270. http://dx.doi.org/10.1002/em.20115CrossrefGoogle Scholar

  • [10] Caliskan M.O., Karauzum S.B., Mihci E., Tacov S. & Luleci G. 2005. Subtelomeric chromosomal rearrangements detected in patients with idiopathic mental retardation and dysmorphic features. Genet. Couns. 16: 129–138. Google Scholar

  • [11] Carpenter N.J. 2001. Molecular cytogenetics. Semin. Pediatr. Neurol. 8: 135–146. http://dx.doi.org/10.1053/spen.2001.26447CrossrefGoogle Scholar

  • [12] Deo M., Yu J.Y., Chung K.H., Tippens M. & Turner D.L. 2006. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev. Dyn. 235: 2538–2548. http://dx.doi.org/10.1002/dvdy.20847CrossrefGoogle Scholar

  • [13] Desmaze C., Pirzio L.M., Mondello C., Giulotto E., Murnane J.P. & Sabatier L. 2004. Interstitial telomeric repeats are not preferentially involved in radiation-induced chromosome aberrations in human cells. Cytogenet. Genome Res. 104: 123–130. http://dx.doi.org/10.1159/000077476CrossrefGoogle Scholar

  • [14] Gall J.G. & Pardue M.L. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. USA 63: 378–383. http://dx.doi.org/10.1073/pnas.63.2.378CrossrefGoogle Scholar

  • [15] Gebeyehu G., Rao P.Y., SooChan P., Simms D. & Klevan L. 1987. Novel biotinylated nucleotide analogs for labeling and colorimetric detection of DNA. Nucleic Acids Res. 15: 4513–4534. http://dx.doi.org/10.1093/nar/15.11.4513CrossrefGoogle Scholar

  • [16] Harris, L.A. 1992. p53 expression in human-breast cancer. Adv. Cancer Res. 59: 69–88. http://dx.doi.org/10.1016/S0065-230X(08)60303-6CrossrefGoogle Scholar

  • [17] Henegariu O., Nyla A.H., Bray-Ward P. & Ward D.C. 1999. Color changing karyotyping (CCK): an M-FISH/SKY alternative. Nat. Genet. 23: 263–264. http://dx.doi.org/10.1038/15437CrossrefGoogle Scholar

  • [18] Henegariu O., Bray-Ward P., Artan S., Vance G.H., Qumsyieh M. & Ward D.C. 2001. Small marker chromosome identification in metaphase and interphase using centromeric multiplex FISH (CM-FISH). Lab. Invest. 81: 475–481. CrossrefGoogle Scholar

  • [19] Holečková B. 2005. The detection of chromosome aberrations by the FISH method in bovine peripheral lymphocytes after in vitro glyphosate-based herbicide exposure. Folia Veterinaria (Kosice) 49: 182–185. Google Scholar

  • [20] Holečková B., Piešová E., Šiviková K. & Dianovský J. 2004. Chromosomal aberrations in humans induced by benzene. Ann. Agric. Environ. Med. 11: 175–179. Google Scholar

  • [21] Chang S.S. & Mark H.F. 1997. Emerging molecular cytogenetic technologies. Cytobios 90: 7–22. Google Scholar

  • [22] Christian A.T., Pattee M.S., Attix C.M., Reed B.E., Sorensen K.J. & Tucker J.D. 2001. Detection of DNA point mutations and mRNA expressions levels by rolling circle amplification in individual cells. Proc. Natl. Acad. Sci. USA 98: 14238–14234. http://dx.doi.org/10.1073/pnas.251383598CrossrefGoogle Scholar

  • [23] Chudoba I., Plesch A., Lorch T., Lemke J., Claussen U & Senger G. 1999. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet. Cell. Genet. 84: 156–160. http://dx.doi.org/10.1159/000015245CrossrefGoogle Scholar

  • [24] John H.A., Bimstiel M.L. & Jones K. W. 1969. RNA-DNA hybrids at the cytological level. Nature 223: 582–587. http://dx.doi.org/10.1038/223582a0CrossrefGoogle Scholar

  • [25] Kakazu N. & Abe T. 2006. Multicolor banding technique, spectral color banding (SCAN): new development and applications. Cytogenet. Genome Res. 114: 250–256. http://dx.doi.org/10.1159/000094209CrossrefGoogle Scholar

  • [26] Kakazu N., Ashihara E., Hada S., Ueda T., Sasaki H., Terada M. & Abe T. 2001. Development of spectral colour banding in cytogenetic analysis. Lancet 9255: 529–530. http://dx.doi.org/10.1016/S0140-6736(00)04051-4CrossrefGoogle Scholar

  • [27] Kakazu N., Bar-Am I., Hada S., Ago H. & Abe T. 2003. A new chromosome banding technique, spectral color banding (SCAN), for full characterization of chromosomal abnormalities. Genes Chromosomes Cancer 37: 412–416. http://dx.doi.org/10.1002/gcc.10229CrossrefGoogle Scholar

  • [28] Kallioniemi A., Kallioniemi O.P., Sudar D., Rutovitz D., Gray J.W., Waldman F. & Pinkel D. 1992. Comparative genomic hybridisation for molecular cytogenetic analysis of solid tumors. Science 191: 818–821. http://dx.doi.org/10.1126/science.1359641CrossrefGoogle Scholar

  • [29] Kearney L. 2006. Multiplex-FISH (M-FISH): technique, developments and applications. Cytogenet. Genome Res. 114: 189–198. http://dx.doi.org/10.1159/000094202CrossrefGoogle Scholar

  • [30] Kearney L. & Horsley S.W. 2005. Molecular cytogenetic in haematological malignancy: current technology and future prospects. Chromosoma 114: 286–294. http://dx.doi.org/10.1007/s00412-005-0002-zCrossrefGoogle Scholar

  • [31] Knight S.J.L. & Flint J. 2000. Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. J. Med. Genet. 37: 401–409. http://dx.doi.org/10.1136/jmg.37.6.401CrossrefGoogle Scholar

  • [32] Kolialexi A., Tsangaris G.T., Kitsiou S., Kanavakis E. & Mavrou A. 2005. Impact of cytogenetic studies on hematologic malignancies. Anticancer. Res. 25: 2979–2983. Google Scholar

  • [33] Laan M., Kallioniemi O.P., Hellsten E., Alitalo K., Peltonen L. & Palotie A. 1995. Mechanically stretched chromosomes as targets for high-resolution FISH mapping. Genome Res. 5: 13–20. CrossrefGoogle Scholar

  • [34] Lakatošová M. & Holečková B. 2006. FISH as a method for detection of radiation induced genetic damage. Folia Veterinaria (Kosice) 50: 37–38. Google Scholar

  • [35] Landsdorp P.M., Verwoerd N.P., van de Rijke F.M., Dragowska V., Little M.T., Dirks R.W., Raap A.P. & Tanke H.J. 1996. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5: 685–691. http://dx.doi.org/10.1093/hmg/5.5.685CrossrefGoogle Scholar

  • [36] Langer P.R., Waldrop A.A. & Ward D.C. 1981. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 78: 6633–6637. http://dx.doi.org/10.1073/pnas.78.11.6633CrossrefGoogle Scholar

  • [37] Larsson K., Koch J., Nygren A., Janssen G., Raap A.K., Landegren U. & Nilsson M. 2004. In situ genotyping individual DNA molecules by target primed rolling-circle amplification of padlock probes. Nat. Meth. 1: 227–232. http://dx.doi.org/10.1038/nmeth723CrossrefGoogle Scholar

  • [38] Levsky J.M. & Singer R.H. 2003. Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116: 2833–2838. http://dx.doi.org/10.1242/jcs.00633CrossrefGoogle Scholar

  • [39] Lichter P. 1997. Multicolor FISHing: what’s the catch. Trends Genet. 13: 475–479. http://dx.doi.org/10.1016/S0168-9525(97)01307-3CrossrefGoogle Scholar

  • [40] Liehr T., Starke H., Weise A., Lehrer H. & Claussen U. 2004. Multicolor FISH probe sets and their applications. Histol. Histopathol. 19: 229–237. Google Scholar

  • [41] Marshall R. & Obe G. 1998. Application of chromosome painting to clastogenicity testing in vitro. Environ. Mol. Mutagen. 32: 212–222. http://dx.doi.org/10.1002/(SICI)1098-2280(1998)32:3<212::AID-EM3>3.0.CO;2-GCrossrefGoogle Scholar

  • [42] McNeil N. & Ried T. 2000. Novel molecular cytogenetic techniques for identifying complex chromosomal rearrangements: technology and applications in molecular medicine. Expert Rev. Mol. Med. 2: 1–14. http://dx.doi.org/10.1017/S1462399400001940CrossrefGoogle Scholar

  • [43] Michalová K., Zemanová Z. & Březinová J. 2001. Multicolor fluorescence in situ hybridization (mFISH). Čas. Lék. Čes. 140: 99–103. Google Scholar

  • [44] Natarajan A.T. 2002. Chromosome aberrations: past, present and future. Mutat. Res. 504: 3–16. Google Scholar

  • [45] Natarajan A.T. & Kesavan P.C. 2005. Cytogenetics for dosimetry in cases of radiation accidents and assessing the safety of irradiated food material. Curr. Sci. 89: 360–365. Google Scholar

  • [46] Natarajan A.T., Vyas R.C., Wiegant J. & Curado M.P. 1991. A cytogenetic follow-up study of the victims of a radiation accident in Goiânia (Brazil). Mutat. Res. 247: 103–111. Google Scholar

  • [47] Nilsson M. 2006. Lock and roll: single molecule genotyping in situ using padlock probes and rolling-circle amplification. Histochem. Cell Biol. 126: 159–164. CrossrefGoogle Scholar

  • [48] Nilsson M., Dahl F., Larsson C., Gullberg M. & Stenberg J. 2006. Analyzing genes using closing and replicating circles. Trends Biotechnol. 24: 83–88. http://dx.doi.org/10.1016/j.tibtech.2005.12.005CrossrefGoogle Scholar

  • [49] Ning Y., Rosenberg M., Biesecker L.G. & Ledbetter D.H. 1996. Isolation of the human chromosome 22q telomere and its application to detection of cryptic chromosomal abnormalities. Hum. Genet. 97: 765–769. CrossrefGoogle Scholar

  • [50] Nowakowska B. & Bocian E. 2004. Molecular cytogenetic techniques and their application in clinical diagnosis. Med. Wieku Rozwoj. 8: 7–24. Google Scholar

  • [51] Pardue M.L. & Gall J.G. 1969. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA 64: 600–604. http://dx.doi.org/10.1073/pnas.64.2.600CrossrefGoogle Scholar

  • [52] Pardue M.L. & Gall J.G. 1970. Chromosomal localization of mouse satellite DNA. Science 168: 1356–1358. http://dx.doi.org/10.1126/science.168.3937.1356CrossrefGoogle Scholar

  • [53] Pellestor F. 2006. In situ aneuploidy assessment in human sperm: the use of primed in situ and peptide nucleic acid-fluorescence in situ hybridisation techniques. Asian J. Androl. 8: 387–392. http://dx.doi.org/10.1111/j.1745-7262.2006.00137.xCrossrefGoogle Scholar

  • [54] Pellestor F., Paulasova P., Macek M. & Hammah S. 2005. The peptide nucleic acids (PNAs): (high-tech) probes for genetic and molecular cytogenetic investigations. Med. Sci. 21: 753–758. Google Scholar

  • [55] Pinkel D., Landegent J., Collins C., Fuscoe J., Segraves R., Lucas J. & Gray J. 1988. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl. Acad. Sci. USA 85: 9138–9142. http://dx.doi.org/10.1073/pnas.85.23.9138Google Scholar

  • [56] Raap A.K. 1998. Advances in fluorescence in situ hybridization. Mutat. Res. 400: 287–98. Google Scholar

  • [57] Raap A.K., Hopman A.H.N. & van der Ploeg M. 1989. Use of hapten modified nucleic acid probes in DNA in situ hybridization. Tech. Immunocytochem. 4: 167–197. CrossrefGoogle Scholar

  • [58] Renz M. & Kurz C. 1984. A colorimetric method for DNA hybridization. Nucleic Acids Res. 12: 3435–3444. http://dx.doi.org/10.1093/nar/12.8.3435CrossrefGoogle Scholar

  • [59] Rosypal S., Doškař J., Petrzik K. & Růžičková V. 2002. Úvod do molekulární biologie. Rosypal, Brno, 300 pp, ISBN 80-902562-4-4. Google Scholar

  • [60] Rudkin G.T. & Stollar B.D. 1977. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 265: 472–473. http://dx.doi.org/10.1038/265472a0CrossrefGoogle Scholar

  • [61] Schröck E., du Manoir S., Veldman T., Schoell B., Wienberg J., Ferguson-Smith M.A., Ning Y., Ledbetter D.H., Bar-Am I., Soenksen D., Garini Y. & Ried T. 1996. Multicolor spectral karyotyping of human chromosomes. Science 273: 494–497. http://dx.doi.org/10.1126/science.273.5274.494CrossrefGoogle Scholar

  • [62] Schrock E. & Padilla-Nash H. 2000. Spectral karyotyping and multicolor fluorescence in situ hybridization reveal new tumor-specific chromosomal aberrations. Semin. Hematol. 37: 334–347. http://dx.doi.org/10.1016/S0037-1963(00)90014-3CrossrefGoogle Scholar

  • [63] Schrock E., Zschieschang P., O’Brien P., Helmrich A., Hardt T., Matthaei A. & Stout-Weider K. 2006. Spectral karyotyping of human, mouse, rat and ape chromosomes-applications for genetic diagnostics and research. Cytogenet. Genome Res. 114: 199–221. http://dx.doi.org/10.1159/000094203CrossrefGoogle Scholar

  • [64] Shakeel S., Karim S. & Ali A. 2006. Peptide nucleic acid (PNA)-a review. J. Chem. Technol. Biotechnol. 81: 892–899. http://dx.doi.org/10.1002/jctb.1505CrossrefGoogle Scholar

  • [65] Speicher M.R., Ballard S.G. & Ward D.C. 1996. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12: 368–375. http://dx.doi.org/10.1038/ng0496-368CrossrefGoogle Scholar

  • [66] Swinger R.R. & Tucker J.D. 1996. Fluorescence in situ hybridization: a brief review. Environ. Mol. Mutagen. 27: 245–254. http://dx.doi.org/10.1002/(SICI)1098-2280(1996)27:4<245::AID-EM1>3.0.CO;2-CCrossrefGoogle Scholar

  • [67] Šiviková K., Holečková B. & Dianovský J. 2005. Chromosome damage induced by benzene after the use of conventional and FISH chromosome painting. Neoplasma 52: 79–84. Google Scholar

  • [68] Tönnies H. 2002. Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol. Med. 8: 246–250. http://dx.doi.org/10.1016/S1471-4914(02)02335-3CrossrefGoogle Scholar

  • [69] Trask B.J. 1991. Fluorescent in situ hybridisation: applications in cytogenetics and gene mapping. Trends Genet. 7: 149–154. CrossrefGoogle Scholar

  • [70] Tucker J.D., Lee D.A., Ramsey M.J., Briner J., Olsen L. & Moore D.H. 1994. On the frequency of chromosome exchanges in a control population measured by chromosome painting. Mutat. Res. 313: 193–202. Google Scholar

  • [71] Tucker J.D., Morgan W.F., Awa A.A., Bauchinger M., Blakey D., Cornforth M.N., Littlefield L.G., Natarajan A.T. & Shasserre C. 1995. A proposed system for scoring structural aberrations detected by chromosome painting. Cytogenet. Cell Genet. 68: 211–221. CrossrefGoogle Scholar

  • [72] Tucker J.D., Ramsey M.J., Lee D.A. & Minkler J.L. 1993. Validation of chromosome painting as a biomarker in human peripheral lymphocytes following acute exposure to ionizing radiation in vitro. Int. J. Radiat. Biol. 64: 27–37. CrossrefGoogle Scholar

  • [73] Verma R.S. & Babu A. 1989. Human Chromosomes: Manual of Basic Techniques. Pergamon Press, New York, 240 pp. Google Scholar

  • [74] Wong A., Martin C.L., Heretis K., Ruffalo T., Wilber K., King W. & Ledbetter D.H. 2005. Detection and calibration of microdeletions and microduplications by array-based comparative genomic hybridization and its applicability to clinical genetic testing. Genet. Med. 7: 264–271. http://dx.doi.org/10.1097/01.GIM.0000160076.14102.ECCrossrefGoogle Scholar

  • [75] Zhang D., Wu J., Ye F., Feng T., Lee I. & Yin B. 2006. Amplification of circularizable probes for detection of target nucleic acids and proteins. Clin. Chim. Acta 363: 61–70. http://dx.doi.org/10.1016/j.cccn.2005.05.039CrossrefGoogle Scholar

About the article

Published Online: 2007-06-01

Published in Print: 2007-06-01


Citation Information: Biologia, Volume 62, Issue 3, Pages 243–250, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-007-0043-2.

Export Citation

© 2007 Institute of Molecular Biology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiao-Ling Jia, Guang-Long Wang, Feng Wang, Yan Li, Zhi-Sheng Xu, and Ai-Sheng Xiong
Journal of Plant Growth Regulation, 2015, Volume 34, Number 3, Page 519
[2]
Kai Wang, Wangzhen Guo, Zaijie Yang, Yan Hu, Wenpan Zhang, Baoliang Zhou, David M. Stelly, Z. Jeffrey Chen, and Tianzhen Zhang
Chromosoma, 2010, Volume 119, Number 3, Page 255

Comments (0)

Please log in or register to comment.
Log in