Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 62, Issue 3

Issues

Bioactive secondary metabolites produced by microorganisms associated with plants

Silvia Firáková
  • Department of Biochemical Technology, Institute of Biotechnology and Food Industry, Slovak University of Technology, Radlinského 9, SK-81237, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mária Šturdíková
  • Department of Biochemical Technology, Institute of Biotechnology and Food Industry, Slovak University of Technology, Radlinského 9, SK-81237, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Múčková
Published Online: 2007-06-01 | DOI: https://doi.org/10.2478/s11756-007-0044-1

Abstract

In the past few decades groups of scientists have focused their study on relatively new microorganisms called endophytes. By definition these microorganisms, mostly fungi and bacteria, colonise the intercellular spaces of the plant tissues. The mutual relationship between endophytic microorganisms and their host plants, taxanomy and ecology of endophytes are being studied. Some of these microorganisms produce bioactive secondary metabolites that may be involved in a host-endophyte relationship. Recently, many endophytic bioactive metabolites, known as well as new substances, possesing a wide variety of biological activities as antibiotic, antitumor, antiinflammatory, antioxidant, etc. have been identified. The microorganisms such as endophytes may be very interesting for biotechnological production of bioactive substances as medicinally important agents. Therefore the aim of this review is to briefly characterize endophytes and summarize the structuraly different bioactive secondary metabolites produced by endophytic microorganisms as well as microbial sources of these metabolites and their host plants.

Keywords: endophytic microorganisms; bioactive secondary metabolites; phytochemicals; plant hosts; therapeutics

  • [1] Araújo W.L., Maccheroni W.Jr., Aguilar-Vildoso C.I., Barroso P.A., Saridakis H.O. & Azevedo J.L. 2001. Can. J. Microbiol. 47: 229–236. http://dx.doi.org/10.1139/cjm-47-3-229CrossrefGoogle Scholar

  • [2] Barz W., Daniel S., Hinderer W., Jaques U., Kessmann H., Koster J. & Tiemann K. 1988. In: Pais M., Mavituna F. & Novais J. (eds), Plant Cell Biotechnology, Springer (NATO ASI series), Berlin, Heidelberg, New York, pp. 211–213. Google Scholar

  • [3] Brady S.F., Wagenaar M.M., Singh M.P., Janso J.E. & Clardy J. 2000. Org. Lett. 14: 4043–4046. http://dx.doi.org/10.1021/ol006680sCrossrefGoogle Scholar

  • [4] Castillo U.F., Strobel G.A., Ford E.J., Hess W.M., Porter H., Jensen J.B., Albert H., Robison R., Condron M.A.M., Teplow D.B., Stevens D. & Yaver, D. 2002. Microbiol. 148: 2675–2685. Google Scholar

  • [5] Castillo U., Harper J.K., Strobel G.A., Sears J., Alesi K., Ford E., Lin J., Hunter M., Maranta M., Ge H., Yaver D., Jensen J.B., Porter H., Robison R., Millar D., Hess W. M., Condron M. & Teplow D. 2003. FEMS Microbiol. Lett. 224: 183–190. http://dx.doi.org/10.1016/S0378-1097(03)00426-9CrossrefGoogle Scholar

  • [6] Coombs J.T., Michelsen P.P. & Franco C.M.M. 2004. Biol. Control 29: 359–366. http://dx.doi.org/10.1016/j.biocontrol.2003.08.001CrossrefGoogle Scholar

  • [7] Dos Santos R. & Rodrigues-Fo E. 2003. Z. Naturforsch. 58c: 663–669. Google Scholar

  • [8] Ezra D., Castillo U.F., Strobel G.A., Hess W.M., Porter H., Jensen J.B., Condron M.A., Teplow D.B., Sears J., Maranta M., Hunter M., Weber B. & Yaver D. 2004. Microbiol. 150: 785–793. http://dx.doi.org/10.1099/mic.0.26645-0CrossrefGoogle Scholar

  • [9] Fábio A., Proença B. & Edson R.F. 2005. Biochem. Syst. Ecol. 33: 257–268. http://dx.doi.org/10.1016/j.bse.2004.09.002CrossrefGoogle Scholar

  • [10] Germaine K., Keogh E., Garcia-Cabellos G., Borremans B., van der Lelie D., Barac T., Oeyen L., Vangronsveld J., Porteous Moore F., Moore E.R.B., Campbell C.D., Ryan D. & Dowling D.N. 2004. FEMS Microbiol. Ecol. 48: 109–118. http://dx.doi.org/10.1016/j.femsec.2003.12.009CrossrefGoogle Scholar

  • [11] Harper J.K., Arif A.M., Ford E.J., Strobel G.A., Porco J.A., Tomer D.P., Oneill K.L., Heider E.M. & Grant D.M. 2003. Tetrahedron 59: 2471–2476. http://dx.doi.org/10.1016/S0040-4020(03)00255-2CrossrefGoogle Scholar

  • [12] Hormazabal E., Schmeda-Hirschmann G., Astudillo L., Rodriguez J. & Theoduloz C. 2005. Z. Naturforsch [C] 60: 11–21. Google Scholar

  • [13] Jadulco R., Brauers G., Edrada R.A., Ebel R., Wray V., Sudarsono V. & Proksch P. 2002. J. Nat. Prod. 65: 730–733. http://dx.doi.org/10.1021/np010390iCrossrefGoogle Scholar

  • [14] Janssen G.B., Beems R.B., Speijers G.J. & van Egmond H.P. 2000. Food Chem. Toxicol. 38: 679–688. http://dx.doi.org/10.1016/S0278-6915(00)00054-5CrossrefGoogle Scholar

  • [15] Kingston D.G.I. 2001. Chem. Commun. 867–880. CrossrefGoogle Scholar

  • [16] Klemke C., Kehraus S., Wright A.D. & Konig G.M. 2004. J. Nat. Prod. 67: 1058–1053. http://dx.doi.org/10.1021/np034061xCrossrefGoogle Scholar

  • [17] Krohn K., Biele C., Drogies K.H., Steingrover K., Aust H.J., Draeger S. & Schulz B. 2002. Eur. J. Org. Chem. 2002: 2331–2336. http://dx.doi.org/10.1002/1099-0690(200207)2002:14<2331::AID-EJOC2331>3.0.CO;2-PCrossrefGoogle Scholar

  • [18] Kumar D.S., Lau S.C., Van J.M., Yang D. & Hyde K.D. 2005. Life Sci. 78: 147–156. http://dx.doi.org/10.1016/j.lfs.2005.04.050CrossrefGoogle Scholar

  • [19] Kunkel B.A., Grewal P.S. & Quigley M.F. 2004. Biol. Control 29: 100–108. http://dx.doi.org/10.1016/S1049-9644(03)00119-1CrossrefGoogle Scholar

  • [20] Leuchtmann A., Petrini O., Petrini L.E. & Carroll G.C. 1992. Mycol. Res. 96: 287–294. CrossrefGoogle Scholar

  • [21] Li J.Y., Harper J.K., Grant D.M., Tombe B.O., Bashyal B., Hess W.M. & Strobel G.A. 2001. Phytochem. 56: 463–468. http://dx.doi.org/10.1016/S0031-9422(00)00408-8CrossrefGoogle Scholar

  • [22] Li J.Y. & Strobel G.A. 2001. Phytochem. 57: 261–265. http://dx.doi.org/10.1016/S0031-9422(01)00021-8CrossrefGoogle Scholar

  • [23] Li H.M., Sullivan R., Moy M., Kobayashi D.Y. & Belanger F.C. 2004. Mycologia 96: 526–536. CrossrefGoogle Scholar

  • [24] Liu J.Y., Song Y.C., Zhang Z., Wang L., Guo Z.J., Zou W.X. & Tan R.X. 2004. J. Biotechnol. 114: 279–287. http://dx.doi.org/10.1016/j.jbiotec.2004.07.008CrossrefGoogle Scholar

  • [25] Ma Y.M., Li Y., Liu J.Y., Song Y.C. & Tan R.X. 2004. Fitoterapia 75: 451–456. http://dx.doi.org/10.1016/j.fitote.2004.03.007CrossrefGoogle Scholar

  • [26] Mercier J. & Jiménez J.I. 2004. Postharvest Biol. Technol. 31: 1–8. http://dx.doi.org/10.1016/j.postharvbio.2003.08.004CrossrefGoogle Scholar

  • [27] Moy M., Li H.J.M., Sullivan R., White J.F. & Belanger F.C. 2002. Plant Physiol. 130: 1298–1308. http://dx.doi.org/10.1104/pp.010108CrossrefGoogle Scholar

  • [28] Ohzeki T. & Mori K. 2003. Biosci. Biotechnol. Biochem. 67: 2584–2590. http://dx.doi.org/10.1271/bbb.67.2584CrossrefGoogle Scholar

  • [29] Park J.H., Choi G.J., Lee H.B., Kim K.M., Jung H.S., Lee S.W., Jang K.S., Cho K.Y. & Kim J.C. 2005. J. Microbiol. Biotechnol. 15: 112–117. Google Scholar

  • [30] Petrini L.E., Petrini O., Leuchtmann A. & Carroll G.C. 1991. Sydowia 43: 148–169. Google Scholar

  • [31] Petrini O., Sieber T.N., Toti L. & Viret O. 1992. Nat. Toxins 1: 185–196. http://dx.doi.org/10.1002/nt.2620010306CrossrefGoogle Scholar

  • [32] Puri S.C., Nazir A., Chawla R., Arora R., Ryiaz-ul-Hasan S., Amna T., Ahmed B., Verma V., Singh S., Sagar R., Sharma A., Kumar R., Sharma R.K. & Quazi G.N. 2006. J. Biotechnol. (in press) Google Scholar

  • [33] Puri S.C., Verma V., Amna T., Quazi G.N. & Spiteller M. 2005. J. Nat. Prod. 68: 1717–1719. http://dx.doi.org/10.1021/np0502802CrossrefGoogle Scholar

  • [34] Read D.J., Ducket J.G., Francis R., Ligron R. & Russell A. 2000. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355: 815–830. http://dx.doi.org/10.1098/rstb.2000.0617CrossrefGoogle Scholar

  • [35] Saikkonen K., Wäli P., Helander M. & Taeth S.H. 2004. Trends Plant Sci. 9: 275–280. http://dx.doi.org/10.1016/j.tplants.2004.04.005CrossrefGoogle Scholar

  • [36] Salituro G.M, Pelaez F. & Zhang B.B. 2001. Recent Prog. Horm. Res. 56: 107–126. http://dx.doi.org/10.1210/rp.56.1.107CrossrefGoogle Scholar

  • [37] Schardl C.L. 2001. Fungal Genet. Biol. 33: 69–82. http://dx.doi.org/10.1006/fgbi.2001.1275CrossrefGoogle Scholar

  • [38] Schulz B., Boyle C.H., Draeger S., Rommert A.K. & Krohn K. 2002. Mycol. Res. 106: 996–1004. http://dx.doi.org/10.1017/S0953756202006342CrossrefGoogle Scholar

  • [39] Schwarz M., Kopcke B., Weber R.W.S., Sterner O. & Anke H. 2004. Phytochem. 65: 2239–2245. http://dx.doi.org/10.1016/j.phytochem.2004.06.035CrossrefGoogle Scholar

  • [40] Scott B. 2001. Curr. Opin. Microbiol. 4: 393–398. http://dx.doi.org/10.1016/S1369-5274(00)00224-1CrossrefGoogle Scholar

  • [41] Sieber T.N., Sieber-Canavesi F. & Dorworth C.E. 1991. Can. J. Bot. 69: 407–411. CrossrefGoogle Scholar

  • [42] Song Y.C., Li H., Ye Y.H., Shan C.Y., Yang Y.M. & Tan R.X. 2004. FEMS Microbiol. Lett. 241: 67–72. http://dx.doi.org/10.1016/j.femsle.2004.10.005CrossrefGoogle Scholar

  • [43] Song Y.C., Huang W.Y., Sun C., Wang F.W. & Tan R.X. 2005. Biol. Pharm. Bull. 28: 506–509. http://dx.doi.org/10.1248/bpb.28.506CrossrefGoogle Scholar

  • [44] Stamford T.L., Stamford N.P., Coelho L.C. & Araujo J.M. 2002. Bioresour. Technol. 83: 105–109. http://dx.doi.org/10.1016/S0960-8524(01)00206-1CrossrefGoogle Scholar

  • [45] Strobel G.A., Stierle A., Stierle D. & Hess W.M. 1993. Mycotaxon. 47: 71–78. Google Scholar

  • [46] Strobel G., Ford E., Worapong J., Harper J.K., Arif A.M., Grant D.M., Fung P.C.W. & Chau R.M.W. 2002. Phytochem. 60: 179–183. http://dx.doi.org/10.1016/S0031-9422(02)00062-6CrossrefGoogle Scholar

  • [47] Strobel G.A. 2002. Can. J. Plant Pathol. 24: 14–20. http://dx.doi.org/10.1080/07060660109506965CrossrefGoogle Scholar

  • [48] Strobel G.A. 2003. Microbes Infect. 5: 535–544. http://dx.doi.org/10.1016/S1286-4579(03)00073-XCrossrefGoogle Scholar

  • [49] Strobel G.A. & Daisy B. 2003. Microbiol. Mol. Biol. Rev. 67: 491–502. http://dx.doi.org/10.1128/MMBR.67.4.491-502.2003CrossrefGoogle Scholar

  • [50] Suto M., Takebayashi M., Saito K., Tanaka M., Yokota A. & Tomita F. 2002. J. Biosci. Bioeng. 93: 88–90. CrossrefGoogle Scholar

  • [51] Tan R.X. & Zou W.X. 2001. Nat. Prod. Rep. 18: 448–459. http://dx.doi.org/10.1039/b100918oCrossrefGoogle Scholar

  • [52] Tesar M., Reichenauer T.G. & Sessitsch A. 2002. Soil Biol. Biochem. 34: 1883–1892. http://dx.doi.org/10.1016/S0038-0717(02)00202-XCrossrefGoogle Scholar

  • [53] Wang J., Machado C., Panaccione D.G., Tsai H.F. & Schardl C.L. 2004. Fungal Genet. Biol. 41: 189–198. http://dx.doi.org/10.1016/j.fgb.2003.10.002CrossrefGoogle Scholar

  • [54] Weber R.W., Stenger E., Meffert A. & Hahn M. 2004a. Mycol. Res. 108: 662–671. http://dx.doi.org/10.1017/S0953756204000243CrossrefGoogle Scholar

  • [55] Weber D., Sterner O., Anke T., Gorzalczancy S., Martino V. & Acevedo C. 2004b. J. Antibiot. (Tokyo) 57: 559–563. CrossrefGoogle Scholar

  • [56] Wiyakrutta S., Sriubolmas N., Panphut W., Thongon N., Danwisetkanjana K., Ruangrungsi N. & Meevootisom V. 2004. World J. Microbiol. Biotechnol. 20: 265–272. http://dx.doi.org/10.1023/B:WIBI.0000023832.27679.a8CrossrefGoogle Scholar

  • [57] Zhao P.J., Fan L.M., Li G.H., Zhu N. & Shen Y.M. 2005. Arch. Pharm. Res. 28: 1228–1232. http://dx.doi.org/10.1007/BF02978203CrossrefGoogle Scholar

About the article

Published Online: 2007-06-01

Published in Print: 2007-06-01


Citation Information: Biologia, Volume 62, Issue 3, Pages 251–257, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-007-0044-1.

Export Citation

© 2007 Institute of Botany, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Esther Singer, Jason Bonnette, Tanja Woyke, and Thomas E. Juenger
Frontiers in Microbiology, 2019, Volume 10
[2]
Sunghee Bang, Changyeol Lee, Soonok Kim, Ji Hoon Song, Ki Sung Kang, Stephen T. Deyrup, Sang-Jip Nam, Xuekui Xia, and Sang Hee Shim
The Journal of Organic Chemistry, 2019, Volume 84, Number 17, Page 10999
[3]
Maryam Salehi, Mohammad Reza Naghavi, and Moslem Bahmankar
Industrial Crops and Products, 2019, Volume 139, Page 111511
[4]
Tingting Li, Ting Ding, and Jianrong Li
Mini-Reviews in Medicinal Chemistry, 2018, Volume 19, Number 2, Page 138
[5]
N A Hanin and P D Fitriasari
IOP Conference Series: Earth and Environmental Science, 2019, Volume 276, Page 012060
[6]
Edson José Mazarotto, Ida Chapaval Pimentel, Daniela Cleide Azevedo de Abreu, and Alvaro Figueredo dos Santos
Floresta e Ambiente, 2019, Volume 26, Number 2
[7]
Atsuko Matsumoto and Yōko Takahashi
The Journal of Antibiotics, 2017, Volume 70, Number 5, Page 514
[8]
Jabeena Khazir, Darren L. Riley, Lynne A. Pilcher, Pieter De-Maayer, and Bilal Ahmad Mir
Natural Product Communications, 2014, Volume 9, Number 11, Page 1934578X1400901
[9]
Reem A. Kamel, Ahmed S. Abdel-Razek, Abdelaaty Hamed, Reham R. Ibrahim, Hans Georg Stammler, Marcel Frese, Norbert Sewald, and Mohamed Shaaban
Natural Product Research, 2019, Page 1
[10]
Amal Aljuraifani, Sahar Aldosary, and Ibtisam Ababutain
National Academy Science Letters, 2018
[11]
B. Shankar Naik
Egyptian Journal of Biological Pest Control, 2018, Volume 28, Number 1
[13]
M. M. J. Taufiq and I. Darah
African Journal of Microbiology Research, 2018, Volume 12, Number 26, Page 616
[15]
Tanushree Naik, Shanadrahalli Chandrashekaraiah Vanitha, Pradumn Kumar Rajvanshi, Manjegowda Chandrika, Subban Kamalraj, and Chelliah Jayabaskaran
Current Microbiology, 2017
[16]
Monika Singh, Ajay Kumar, Ritu Singh, and Kapil Deo Pandey
3 Biotech, 2017, Volume 7, Number 5
[17]
Francisco Gheler Costa, Tiago Domingues Zucchi, and Itamar Soares de Melo
Brazilian Archives of Biology and Technology, 2013, Volume 56, Number 6, Page 948
[18]
[19]
M. Janarthanan and M. Senthil Kumar
International Journal of Clothing Science and Technology, 2017, Volume 29, Number 2, Page 200
[20]
Rabia Tanvir, Aqeel Javeed, and Aamir Ghafoor Bajwa
Applied Microbiology and Biotechnology, 2017, Volume 101, Number 5, Page 1831
[22]
Poonam C. Singh, Deepali Shukla, Touseef Fatima, Chandra Shekhar Nautiyal, and Jayandra Kumar Johri
Journal of Plant Growth Regulation, 2017, Volume 36, Number 1, Page 106
[23]
Min Jia, Ling Chen, Hai-Liang Xin, Cheng-Jian Zheng, Khalid Rahman, Ting Han, and Lu-Ping Qin
Frontiers in Microbiology, 2016, Volume 7
[24]
Abdul Latif Khan, Boshra Ahmed Halo, Ali Elyassi, Sajid Ali, Khadija Al-Hosni, Javid Hussain, Ahmed Al-Harrasi, and In-Jung Lee
Electronic Journal of Biotechnology, 2016, Volume 21, Page 58
[25]
Ravely Casarotti Orlandelli, Ana Flora Dalberto Vasconcelos, João Lúcio Azevedo, Maria de Lourdes Corradi da Silva, and João Alencar Pamphile
Biochimie Open, 2016, Volume 2, Page 33
[26]
Muhammad Waqas, Abdul Latif Khan, Muhammad Hamayun, Raheem Shahzad, Sang-Mo Kang, Jong-Guk Kim, and In-Jung Lee
Journal of Plant Interactions, 2015, Volume 10, Number 1, Page 280
[27]
Nael Abutaha, Ashraf M. A. Mashaly, Fahd A. Al-Mekhlafi, Muhammed Farooq, Mohammed Al-shami, and Muhammad A. Wadaan
Applied Entomology and Zoology, 2015, Volume 50, Number 3, Page 405
[28]
Henrique Pereira Ramos and Suraia Said
Advances in Bioscience and Biotechnology, 2011, Volume 02, Number 06, Page 443
[29]
Muhammad Waqas, Abdul Latif Khan, Muhammad Hamayun, Raheem Shahzad, Yoon-Ha Kim, Kyung-Sook Choi, and In-Jung Lee
European Journal of Plant Pathology, 2015, Volume 141, Number 4, Page 803
[30]
A. O. Berestetskiy, E. L. Gasich, E. V. Poluektova, E. V. Nikolaeva, S. V. Sokornova, and L. B. Khlopunova
Microbiology, 2014, Volume 83, Number 5, Page 523
[31]
Min Jia, Qian-Liang Ming, Qiao-Yan Zhang, Yu Chen, Nuo Cheng, Wen-wen Wu, Ting Han, and Lu-Ping Qin
Current Microbiology, 2014, Volume 69, Number 3, Page 381
[32]
Tong Wang, Man-Qiang Liu, and Hui-Xin Li
Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2014, Volume 64, Number 3, Page 252
[33]
Vineet Meshram, Neha Kapoor, and Sanjai Saxena
Mycology: An International Journal on Fungal Biology, 2013, Volume 4, Number 4, Page 196
[34]
Jianglin Zhao, Dabing Xiang, Lianxin Peng, Liang Zou, Yuehua Wang, and Gang Zhao
Preparative Biochemistry and Biotechnology, 2014, Volume 44, Number 8, Page 782
[35]
Liancai Zhu, Xi Liu, Jun Tan, and Bochu Wang
Journal of Agricultural and Food Chemistry, 2013, Volume 61, Number 47, Page 11477
[36]
Khaled A. Selim, Ahmed A. El-Beih, Tahany M. Abdel-Rahman, and Ahmed I. El-Diwany
Cell Biochemistry and Biophysics, 2014, Volume 68, Number 1, Page 67
[37]
Elsa Lycias Joel and B. Valentin Bhimba
Alexandria Journal of Medicine, 2013, Volume 49, Number 3, Page 189
[38]
Koji Yamada, Amgad I. M. Khedr, Isao Kouno, and Takashi Tanaka
HETEROCYCLES, 2013, Volume 87, Number 5, Page 1029
[39]
Kanika Chowdhary, Nutan Kaushik, Azucena Gonzalez Coloma, and Cabrera Manuel Raimundo
Phytochemistry Reviews, 2012, Volume 11, Number 4, Page 467
[40]
Derek S. Lundberg, Sarah L. Lebeis, Sur Herrera Paredes, Scott Yourstone, Jase Gehring, Stephanie Malfatti, Julien Tremblay, Anna Engelbrektson, Victor Kunin, Tijana Glavina del Rio, Robert C. Edgar, Thilo Eickhorst, Ruth E. Ley, Philip Hugenholtz, Susannah Green Tringe, and Jeffery L. Dangl
Nature, 2012, Volume 488, Number 7409, Page 86
[41]
Mohsen Soleimani, Majid Afyuni, Mohammad A. Hajabbasi, Farshid Nourbakhsh, Mohammad R. Sabzalian, and Jan H. Christensen
Chemosphere, 2010, Volume 81, Number 9, Page 1084
[42]
Yan Li, Peiqin Li, Yan Mou, Jianglin Zhao, Tijiang Shan, Chunbang Ding, and Ligang Zhou
World Journal of Microbiology and Biotechnology, 2012, Volume 28, Number 4, Page 1407
[43]
T.S. Suryanarayanan, N. Thirunavukkarasu, M.B. Govindarajulu, F. Sasse, R. Jansen, and T.S. Murali
Fungal Biology Reviews, 2009, Volume 23, Number 1-2, Page 9
[44]
Harold Prada, Laura Ávila, Roberto Sierra, Adriana Bernal, and Silvia Restrepo
Revista Iberoamericana de Micología, 2009, Volume 26, Number 3, Page 198
[45]
Jyoti Bhagat, Amarjeet Kaur, Madhunika Sharma, A. K. Saxena, and B. S. Chadha
World Journal of Microbiology and Biotechnology, 2012, Volume 28, Number 3, Page 963
[46]
Willian J. Andrioli, Tony M. Silva, Vinícius B. da Silva, André R.L. Damásio, Alexandre Maller, Raphael Conti, João A. Jorge, Janete M. Araújo, Carlos H.T.P. Silva, Mônica T. Pupo, Maria L.T.M. Polizeli, and Jairo K. Bastos
Journal of Molecular Catalysis B: Enzymatic, 2012, Volume 74, Number 3-4, Page 156
[47]
Mariana Recco Pimentel, Gustavo Molina, Ana Paula Dionísio, Mário Roberto Maróstica Junior, and Gláucia Maria Pastore
Biotechnology Research International, 2011, Volume 2011, Page 1
[48]
Baby Joseph and R. Mini Priya
American Journal of Biochemistry and Molecular Biology, 2011, Volume 1, Number 3, Page 291
[49]
Debdulal Banerjee
Research Journal of Microbiology, 2011, Volume 6, Number 1, Page 54
[50]
Tania Taurian, María Soledad Anzuay, Jorge Guillermo Angelini, María Laura Tonelli, Liliana Ludueña, Dayana Pena, Fernando Ibáñez, and Adriana Fabra
Plant and Soil, 2010, Volume 329, Number 1-2, Page 421
[51]
Margareth B. C. Gallo, Fernanda O. Chagas, Marília O. Almeida, Cláudia C. Macedo, Bruno C. Cavalcanti, Francisco W. A. Barros, Manoel O. de Moraes, Letícia V. Costa-Lotufo, Cláudia Pessoa, Jairo K. Bastos, and Mônica T. Pupo
Journal of Basic Microbiology, 2009, Volume 49, Number 2, Page 142
[52]
Jörn Piel
Nat. Prod. Rep., 2009, Volume 26, Number 3, Page 338
[53]
Hanane Hamdali, Mohamed Hafidi, Marie Joëlle Virolle, and Yedir Ouhdouch
World Journal of Microbiology and Biotechnology, 2008, Volume 24, Number 11, Page 2565

Comments (0)

Please log in or register to comment.
Log in