Jump to ContentJump to Main Navigation
Show Summary Details


IMPACT FACTOR 2015: 0.719
5-year IMPACT FACTOR: 0.740

SCImago Journal Rank (SJR) 2015: 0.322
Source Normalized Impact per Paper (SNIP) 2015: 0.510
Impact per Publication (IPP) 2015: 0.786

149,00 € / $224.00 / £112.00*

See all formats and pricing

Select Volume and Issue


A stopped-flow fluorescence study of the native and modified lysozyme

1Department of Biophysics & Biochemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14115-175, Tehran, Islamic Republic of Iran

2National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Islamic Republic of Iran

3Department of Biology, Faculty of Science, Al-Zahra University, Tehran, Islamic Republic of Iran

© 2007 Institute of Molecular Biology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 62, Issue 3, Pages 258–264, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: 10.2478/s11756-007-0045-0, June 2007

Publication History

Published Online:


The protein folding kinetics of hen egg white lysozyme (HEWL) was studied using experimental and bioinformatics tools. The structure of the transition state in the unfolding pathway of lysozyme was determined with stopped-flow kinetics using intact HEWL and its chemically modified derivative, in which six lysine residues have been modified. The overall consistency of φ-value (φ ≈ 1) indicates that lysine side chains interactions are subject to breaking in the structure of the transition state. Following experimental evidences, multiple sequence alignment of lysozyme family in vertebrates and exact structural examination of lysozyme, showed that the α-helix in the structure of lysozyme has critical role in the unfolding kinetics.

Keywords: folding; stopped-flow kinetics; hen egg white lysozyme; φ-value; bioinformatics; transition state

  • [1] Altschul S.F., Gish W., Miller W., Myers E.W & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

  • [2] Blake C.C.F., Johnson L.N., Mair G.A., North A.C.T., Phillips D.C & Sarma V.R. 1967. Crystallographic studies of the activity of hen egg-white lysozyme. Proc. Roy. Soc. 167: 378–388.

  • [3] Bryngelson J.D., Onuchic J.N., Socci N.D & Wolynes P.G. 1995. Funnels, pathways and the energy landscape of protein folding: a synthesis. Proteins: Struct. Funct. Genet. 21: 167–195. http://dx.doi.org/10.1002/prot.340210302 [Crossref]

  • [4] Caffotte A.F., Guillou Y & Goldberg M.E. 1992. Kinetic resolution of peptide bond and side-chain far UV CD during folding of HEWL. Biochemistry 31: 9694–9702. http://dx.doi.org/10.1021/bi00155a024 [Crossref]

  • [5] Chen L., Wildegger G., Kiefhaber T.H., Hodgson K.O & Doniach S. 1998. Kinetics of lysozyme refolding: structural characterization of a non-specifically collapsed state using time-resolved X-ray scattering. J. Mol. Biol. 276: 225–237. http://dx.doi.org/10.1006/jmbi.1997.1514 [Crossref]

  • [6] Dalby P.A, Oliveberg M. & Fersht A.R. 1998. Folding intermediates of wild-type and mutants of barnase: use of φ-value analysis and m-values to probe the cooperative nature of the folding pre-equilibrium. J. Mol. Biol. 276: 625–646. http://dx.doi.org/10.1006/jmbi.1997.1546 [Crossref]

  • [7] Demirel M.C., Atilgan A.R., Jernigan R.L., Erman B & Bahar I. 1998. Identification of kinetically hot residues in proteins. Protein Sci. 7: 2522–2532. [PubMed] [Crossref]

  • [8] Denton M.E., Rothwarf D.M & Scheraga H.A. 1994. Kinetics of folding of guanidinic denatured hen egg white lysozyme and carboxymethyl Cys(6).Cys(12r)-lysozyme: a stopped-flow absorbance and fluorescence study. Biochemistry 33: 11225–11236. http://dx.doi.org/10.1021/bi00203a019 [Crossref]

  • [9] Dixon H.B.F & Perham R.N. 1968. Reversible blocking of amino groups with citraconic anhydride. Biochem. J. 109: 312–314.

  • [10] Evans M.G & Polanyi M. 1935. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31: 875–894. http://dx.doi.org/10.1039/tf9353100875 [Crossref]

  • [11] Eyring H. 1935. The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17: 65–77. http://dx.doi.org/10.1021/cr60056a006 [Crossref]

  • [12] Fersht A.R. 1993. Protein folding and stability: the pathway of folding of barnase. FEBS Lett. 325: 5–16. http://dx.doi.org/10.1016/0014-5793(93)81405-O [Crossref]

  • [13] Fersht A.R. 1997. Nucleation mechanisms in protein folding. Curr. Opin. Struct. Biol. 7: 3–9. http://dx.doi.org/10.1016/S0959-440X(97)80002-4 [Crossref]

  • [14] Fersht A.R., Matouscheck A & Serrano L. 1992. The folding of an enzyme: I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224: 771–782. http://dx.doi.org/10.1016/0022-2836(92)90561-W [Crossref]

  • [15] Ikeguchi M., Fujino M., Kato M., Kuwajima K & Sugai S. 1998. Transition state in the folding of α-lactalbumin probed by the 6–120 disulfide bond. Protein Sci. 7: 1564–1574. http://dx.doi.org/10.1002/pro.5560070710 [Crossref]

  • [16] Imoto T., Forster L.S., Rupley J.A & Tanak F. 1981. Fluorescence of lysozyme: emission from tryptophan residues 62 and 108 and energy migration. Proc. Natl. Acad. Sci. USA 69: 1151–1155. http://dx.doi.org/10.1073/pnas.69.5.1151 [Crossref]

  • [17] Itzhaki L.S., Evans P.A., Dobson C.M. & Radford S.E. 1994. Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probs. Biochemistry 33: 5212–5220. http://dx.doi.org/10.1021/bi00183a026 [Crossref]

  • [18] Jolles P & Jolles J. 1984. What’s new in lysozyme research? Mol. Cell. Biochem. 63: 165–189. http://dx.doi.org/10.1007/BF00285225 [Crossref]

  • [19] Kato S., Shimoto N. & Utijma H. 1982. Identification and characterization of the direct folding process of hen egg white lysozyme. Biochemistry 21: 38–43. http://dx.doi.org/10.1021/bi00530a007 [Crossref]

  • [20] Khan F., Chuang J.I., Gianni S & Fersht A.R. 2003. The kinetic pathway of folding of barnase, J. Mol. Biol. 333: 169–186. http://dx.doi.org/10.1016/j.jmb.2003.08.024 [Crossref]

  • [21] Kiefhaber T. 1995. Kinetic traps in lysozyme folding. Proc. Natl. Acad. Sci. USA 92: 9029–9033. http://dx.doi.org/10.1073/pnas.92.20.9029 [Crossref]

  • [22] Kiefhaber T & Wildegger G. 1997. Three-state model for lysozyme folding: triangular folding mechanism with an energetically trapped intermediate. J. Mol. Biol. 270: 294–304. http://dx.doi.org/10.1006/jmbi.1997.1030 [Crossref]

  • [23] Kuwajima K., Hiraoka Y., Ikeguchi M & Sugai S. 1985. Comparison of the transition state folding intermediates in lysozyme and α-lactalbumin. Biochemistry 24: 874–881 http://dx.doi.org/10.1021/bi00325a010 [Crossref]

  • [24] Matouschek A., Kellis J., Serrano L & Fersht A.R. 1989. Mapping the transition state and pathway of protein folding by protein engineering. Nature 340: 122–126. http://dx.doi.org/10.1038/340122a0 [Crossref]

  • [25] Matouschek A., Serrano L. & Fersht A.R. 1992. The folding of an enzyme: IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure. J. Mol. Biol. 224: 819–835. http://dx.doi.org/10.1016/0022-2836(92)90564-Z [Crossref]

  • [26] Matouschek A., Serrano L., Meiering E.M., Bycroft M. & Fersht A.R. 1992. The folding of an enzyme: V. H/2H exchange-nuclear magnetic resonance studies on the folding pathway of barnase: complementarity to and agreement with protein engineering studies. J. Mol. Biol. 224: 837–845. http://dx.doi.org/10.1016/0022-2836(92)90565-2 [Crossref]

  • [27] Mirny L.A., Abkevich V.I & Shakhnovich E.I. 1998. How evolution makes proteins fold quickly. Proc. Natl. Acad. Sci. USA 95: 4976–4981. http://dx.doi.org/10.1073/pnas.95.9.4976 [Crossref]

  • [28] Mirny L.A & Shakhnovich E.I. 1999. Universally conserved positions in protein folds: reading evolutionary signals about stability, folding and function. J. Mol. Biol. 291: 177–196. http://dx.doi.org/10.1006/jmbi.1999.2911 [Crossref]

  • [29] Mirny L.A & Shakhnovich E.I. 2001a. Protein folding theory: from lattice to all-atom models. Annu. Rev. Biophys. Biomol. Struct. 30: 361–396. http://dx.doi.org/10.1146/annurev.biophys.30.1.361

  • [30] Mirny L.A & Shakhnovich E.I. 2001b. Evolutionary conservation of the folding nucleus. J. Mol. Biol. 308: 123–129. http://dx.doi.org/10.1006/jmbi.2001.4602

  • [31] O’Farrell P.H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007–4021.

  • [32] Pane V.S., Grosberg A.Y., Tanaka T & Rokhsar D.S. 1998. Pathways for protein folding: is a new view needed? Curr. Opin. Struct. Biol. 8: 68–79. http://dx.doi.org/10.1016/S0959-440X(98)80012-2 [Crossref]

  • [33] Parker M.J., Spencer J & Clark A.R. 1995. An integrated kinetic analysis of intermediates and transitions states in protein folding reactions. J. Mol. Biol. 253: 771–786. http://dx.doi.org/10.1006/jmbi.1995.0590 [Crossref]

  • [34] Plaxco K.W., Riddle D.S., Larson S., Ruczinski I., Thayer E.C & Buchwits B. 2001. Evolutionary conservation and protein folding kinetics. J. Mol. Biol. 298: 303–312. http://dx.doi.org/10.1006/jmbi.1999.3663 [Crossref]

  • [35] Poupon A. & Marnon J.P. 1999. Predicting the protein folding nucleus from a sequence. FEBS Lett. 452: 283–289. http://dx.doi.org/10.1016/S0014-5793(99)00622-5 [Crossref]

  • [36] Protasevich I., Ranjbar B., Lobachov V., Makarov A., Gilli R., Briand C., Lafitte D & Haiech J. 1997. Conformation and thermal denaturation of apocalmodulin: role of electrostatic mutations. Biochemistry 36: 2017–2024. http://dx.doi.org/10.1021/bi962538g [Crossref]

  • [37] Radford S.E., Dobson C.M & Evans P.A. 1992. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358: 302–307. http://dx.doi.org/10.1038/358302a0 [Crossref]

  • [38] Rypniech W.R., Holden H.M & Rayment I. 1993. Structural consequences of reductive methylation of lysine residue in hen egg white lysozyme: an X-ray analysis at 1.8–? resolution. Biochemistry 32: 9851–9858. http://dx.doi.org/10.1021/bi00088a041 [Crossref]

  • [39] Salmine M., Caro B., Guen-Robin F.L., Blais J.C & Jaouen G. 2004. Solution-and crystal-phase covalent modification of lysozyme by a purpose-designed organoruthenium complex. A MALDI-TOF MS study of its metal binding sites. ChemBioChem 5: 99–109. http://dx.doi.org/10.1002/cbic.200300637 [Crossref]

  • [40] Sanz J.M & Fersht A.R. 1994. Measurement of barnase refolding rate constants under denaturing conditions, FEBS Lett. 344: 216–220. http://dx.doi.org/10.1016/0014-5793(94)00384-X [Crossref]

  • [41] Schippers P.H & Deckers H.P.J.M. 1981. Direct determination of absolute circular dichroism data and calibration of commercial instrument. Anal. Chem. 53: 778–788. http://dx.doi.org/10.1021/ac00229a008 [Crossref]

  • [42] Segel D.J., Bachmann A., Hofrichter J., Hodgson K.O & Daniach S. 1999. Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. J. Mol. Biol. 288: 489–499. http://dx.doi.org/10.1006/jmbi.1999.2703 [Crossref]

  • [43] Serrano L., Kellis J., Cann T.P., Matouschek A & Fersht A.R. 1992. The folding of an enzyme: II. Substructure of barnase and the contribution of different interactions to protein stability. J. Mol. Biol. 224: 783–804. http://dx.doi.org/10.1016/0022-2836(92)90562-X [Crossref]

  • [44] Serrano L., Matouschek A & Fersht A.R. 1992. The folding of an enzyme: III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J. Mol. Biol. 224: 805–818. http://dx.doi.org/10.1016/0022-2836(92)90563-Y [Crossref]

  • [45] Serrano L., Matouschek A & Fersht, A.R. 1992. The folding of an enzyme: IV. The folding pathway of barnase: comparison with theoretical models. J. Mol. Biol. 224: 847–850. http://dx.doi.org/10.1016/0022-2836(92)90566-3 [Crossref]

  • [46] Shakhnovich E.I., Abkevich V.I & Ptitsyn O. 1996. Conserved residues and the mechanism of protein folding. Nature 379: 96–98. http://dx.doi.org/10.1038/379096a0 [Crossref]

  • [47] Shrivastava I., Vishveshwara S., Clieplak M., Maritan A & Banavar J.R. 1995. Lattice model for rapidly folding protein-like heteropolymers. Proc. Natl. Acad. Sci. USA 92: 9206–9209. http://dx.doi.org/10.1073/pnas.92.20.9206 [Crossref]

  • [48] Suckau D., Mak M & Przybylski M. 1992. Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. USA 89: 5630–5634. http://dx.doi.org/10.1073/pnas.89.12.5630 [Crossref]

  • [49] Takakuwa T., Konno T & Meguro H.A. 1985. New standard substance for calibration of circular dichroism: ammoniumd-10-camphorsulfonate. Anal. Sci. 1: 215–225.

  • [50] Tanford C. 1968. Protein denaturation. Adv. Protein Chem. 23: 121–282. [Crossref]

  • [51] Tanford C. 1970. Protein denaturation. Adv. Protein Chem. 24: 1–95. http://dx.doi.org/10.1016/S0065-3233(08)60241-7 [Crossref]

  • [52] Tanford C., Aune K.C & Ikai A.A. 1973. Kinetics of unfolding and refolding of proteins. III: Results for lysozyme. J. Mol. Biol. 73: 185–197. http://dx.doi.org/10.1016/0022-2836(73)90322-7 [Crossref]

  • [53] Tang K.S., Guaralnick B.J., Wang W.K., Fersht A.R & Itzhaki L.S. 1999. Stability and folding of the tumor suppressor protein P16. J. Mol. Biol. 285: 1869–1886. http://dx.doi.org/10.1006/jmbi.1998.2420 [Crossref]

  • [54] Thompson J.D., Higgins D.G & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680. http://dx.doi.org/10.1093/nar/22.22.4673 [Crossref]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Forough Hakiminia, Bijan Ranjbar, Khosrow Khalifeh, and khosro khajeh
International Journal of Biological Macromolecules, 2013, Volume 55, Page 123
Bijan Ranjbar and Pooria Gill
Chemical Biology & Drug Design, 2009, Volume 74, Number 2, Page 101

Comments (0)

Please log in or register to comment.