Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 62, Issue 3

Issues

Comparative study of two forms of aro A CP4 gene in Escherichia coli

Satheesh Natarajan
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanislav Stuchlík
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martina Kukučková
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Veronika Renczésová
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvia Vávrová
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zuzana Bargárová
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roland Pálffy
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Celec
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marián Mačor
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ján Turňa
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215, Bratislava, Slovakia
  • Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-06-01 | DOI: https://doi.org/10.2478/s11756-007-0046-z

Abstract

The enzyme CP4 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) from Agrobacterium tumefaciens CP4, encoded by the aroA gene, has been used for the construction of genetically modified crops resistant to total herbicide glyphosate. During the study of possible horizontal gene transfer of aroA CP4 gene from genetically modified food in gastrointestinal tract to bacterial community living in the animal gut, we have discovered and characterized truncated form of aroA CP4 within the cloning experiments in Escherichia coli. We have compared properties of the recombinant E. coli strains with both CP4 EPSPS enzyme forms.

Keywords: CP4 5-enolpyruvylshikimate-3-phosphate synthase; genetically modified organisms; glyphosate; horizontal gene transfer; risk assessment

  • [1] Alibhai M.F. & Stallings W.C. 2001. Closing down on glyphosate inhibition — with a new structure for drug discovery. Proc. Natl. Acad. Sci. USA 98: 2944–2946. http://dx.doi.org/10.1073/pnas.061025898CrossrefGoogle Scholar

  • [2] Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. http://dx.doi.org/10.1093/nar/25.17.3389CrossrefGoogle Scholar

  • [3] Amann E. & Brosius J. 1985. “ATG vectors” for regulated high-level expression of cloned genes in Escherichia coli. Gene 40: 183–190. http://dx.doi.org/10.1016/0378-1119(85)90041-1CrossrefGoogle Scholar

  • [4] Amrhein N., Schab J. & Steinrucker H.C. 1980. The mode of action of the herbicide glyphosate. Naturewissenschaften 67: 356–357. http://dx.doi.org/10.1007/BF01106593CrossrefGoogle Scholar

  • [5] Bachmann B.J. 1987. Derivations and genotypes of some mutant derivatives of Escherichia coli K-12, pp. 1190–1219. In: Neidhardt F.C. et al. (eds), Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, American Society for Microbiology. Google Scholar

  • [6] Barry G., Kishore, G., Padgette B., Stephen R., Stallings W. & William C. 1997. United States Patent No. US 5,633,435. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases. Google Scholar

  • [7] Barry G., Kishore G., Padgette S., Talor M., Kolacz K., Weldon M., Re D., Eichholz D., Fincher K. & Hallas L. 1992. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to plants, pp. 139–145. In: Singh B.K., Flores H.E. & Shannon J.C. (eds), Biosynthesis and Molecular Regulation of Amino Acids in Plants, American Society for Plant Physiology. Google Scholar

  • [8] Chang H.S., Bae Y.K., Lim S.K., Jeong T.C., Kim H.S., Chung S.T., Kim D.S. & Nam D.H. 2001. Allergenicity test of genetically modified soybean in Sprague Dawley rats. Arch. Pharm. Res. 24: 256–261. http://dx.doi.org/10.1007/BF02978267CrossrefGoogle Scholar

  • [9] Chen L., Pradhan S. & Evans Jr. T. C. 2001. Herbicide resistance from a divided EPSPS protein: the split Synechocystis DnaE intein as an in vivo affinity domain. Gene 263: 39–48. http://dx.doi.org/10.1016/S0378-1119(00)00568-0CrossrefGoogle Scholar

  • [10] Della-Cioppa S.C., Bauer M.L., Taylor D.E., Rochester B.K., Klein D.M., Shah R.T. & Kishore G.M. 1987. Targeting an herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. BioTechnology 5: 579–584. http://dx.doi.org/10.1038/nbt0687-579CrossrefGoogle Scholar

  • [11] Duncan K., Lewendon A. & Coggins J.R. 1984. The purification of 5-enolpyruvylshikimate 3-phosphate synthase from an overproducing strain of Escherichia coli. FEBS Lett. 170: 59–63. http://dx.doi.org/10.1016/0014-5793(84)81368-XCrossrefGoogle Scholar

  • [12] Fitzgibbon J.E. & Braymer H.D. 1990. Cloning of a gene from Pseudomonas sp. strain PG2982 conferring increased glyphosate resistance. Appl. Environ. Microbiol. 56: 3382–3388. Google Scholar

  • [13] Gay P. 2001. The biosafety of antibiotic resistance markers in plant transformation and the dissemination of genes through horizontal gene flow, pp. 135–159. In: Clusters R. (ed.), Safety of Genetically Engineered Crops, Institute of Biotechnology, Belgium Flanders Interuniversity, Zwijnaarde. Google Scholar

  • [14] Gresshoff P.M. 1979. Growth inhbition by glyphosate and reversal of its action by phenylalanine and tyrosine. Aust. J. Plant Physiol. 6: 177–185. http://dx.doi.org/10.1071/PP9790177CrossrefGoogle Scholar

  • [15] Halford N.G. & Shewry P.R. 2002. Geneticlaly modified crops: methodology, benefits, regulation and public concerns. Br. Med. Bull. 56: 62–73. http://dx.doi.org/10.1258/0007142001902978CrossrefGoogle Scholar

  • [16] Holst J., Arne R., Sissel B., Lovseth A. & Berdal K. 2003. PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal. Bioanal. Chem. 8: 985–993. Google Scholar

  • [17] Jaworski E.G. 1972. Mode of action of N-phosphonomethylglycine inhibition of aromatic amino acid biosynthesis. J. Agric. Food Chem. 20: 1195–1198. http://dx.doi.org/10.1021/jf60184a057CrossrefGoogle Scholar

  • [18] Kishore G.M. & Shah D.M. 1988. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57: 627–663. http://dx.doi.org/10.1146/annurev.bi.57.070188.003211CrossrefGoogle Scholar

  • [19] Roberts C., Roberts F., Lyons R.E., Kirisits M.J., Mui E.J., Finnerty J., Johnson J.J., Ferguson D.J., Coggins J.R., Krell T., Coombs G.H., Milhous W.K., Kyle D.E., Tzipori S., Barnwell J., Dame J.B., Carlton J. & McLeod R. 2002. The shikimate pathway and its branches in apicomplexan parasites. J. Infect. Dis. 185: 25–36. http://dx.doi.org/10.1086/338004CrossrefGoogle Scholar

  • [20] Sambrook J., Fritsch E.F., & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Google Scholar

  • [21] Silhavy T.J., Berman M.L. & Enquist L.W. 1984. Experiments with Gene Fusions, Cold spring Harbor Laboratory, New York. Google Scholar

  • [22] Skarzynski T., Mistry A., Wonacott A., Hutchinson S.E., Kelly V.A. & Duncan K. 1996. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure 4: 1465–1474. http://dx.doi.org/10.1016/S0969-2126(96)00153-0CrossrefGoogle Scholar

  • [23] Sost D. & Amrhein N. 1990. Substitution of GLY-96 to Ala in the 5-enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae results in a greatly reduced affinity for the herbicide glyphosate. Arch. Biochem. Biophys. 282: 433–436. http://dx.doi.org/10.1016/0003-9861(90)90140-TCrossrefGoogle Scholar

  • [24] Steinrücker H.C. & Amrhein N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94: 1207–1212. http://dx.doi.org/10.1016/0006-291X(80)90547-1CrossrefGoogle Scholar

  • [25] Steinrücker H.C. & Amrhein N. 1984. 5-Enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae. 2. Inhibition by glyphosate [N-(phosphonomethyl) glycine]. Eur. J. Biochem. 143: 351–357. http://dx.doi.org/10.1111/j.1432-1033.1984.tb08379.xGoogle Scholar

  • [26] Yanish-Perron C., Vieira J. & Messing J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119. http://dx.doi.org/10.1016/0378-1119(85)90120-9CrossrefGoogle Scholar

About the article

Published Online: 2007-06-01

Published in Print: 2007-06-01


Citation Information: Biologia, Volume 62, Issue 3, Pages 265–269, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-007-0046-z.

Export Citation

© 2007 Institute of Molecular Biology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A.H.C. Van Bruggen, M.M. He, K. Shin, V. Mai, K.C. Jeong, M.R. Finckh, and J.G. Morris
Science of The Total Environment, 2018, Volume 616-617, Page 255

Comments (0)

Please log in or register to comment.
Log in