Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Biologia



Weitere Optionen …
Band 62, Heft 3

Hefte

Biosorption of Co2+ ions by lichen Hypogymnia physodes from aqueous solutions

Martin Pipíška
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701, Trnava, Slovakia
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Miroslav Horník
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701, Trnava, Slovakia
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ L’uboš Vrtoch
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701, Trnava, Slovakia
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Jozef Augustín
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701, Trnava, Slovakia
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Juraj Lesný
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701, Trnava, Slovakia
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 01.06.2007 | DOI: https://doi.org/10.2478/s11756-007-0047-y

Abstract

Cobalt is one of the possible contaminants originating from radioactive wastes or from metal mines and refineries. This paper describes sorption of cobalt by the foliose lichen Hypogymnia physodes from CoCl2 solutions spiked with 60Co2+ in laboratory experiments. Maximum uptake was reached within 1 hour; the biosorption after 24 hours is not pH-dependent within the range of pH 4–7, negligible at pH 2 and is not dependent on metabolic activity. The process can be described by the Freundlich adsorption isotherm with ln k = 2.77, 1/n = 0.22 and R 2 = 0.94. Bivalent metal ions showed a concentration-dependent competitive effect on cobalt biosorption, decreasing in the order: Cu > Ni > Ca > Mg. Monovalent ions, such as K+ and Na+, showed only very weak competitive effect. Up to 98% of Co taken up by lichen can be removed by washing with 0.1 M NiCl2 at 20°C. This means that only a small fraction of the cobalt is localized intracellularly. These results can be used for elucidating the behaviour of lichens as bioindicators of cobalt pollution in water systems, including the risk of cobalt leakage from lichen probes under the influence of rain, snow and atmospheric humidity.

Keywords: Co2+; biosorption; Hypogymnia physodes; kinetics; sorption isotherms; cellular localization

  • [1] Antonelli M.L., Ercole P. & Campanella L. 1998. Studies about the adsorption on lichen Evernia prunastri by enthalpimetric measurements. Talanta 45: 1039–1047. http://dx.doi.org/10.1016/S0039-9140(97)00226-9CrossrefGoogle Scholar

  • [2] Branquinho C. & Brown D.H. 1994. A method for studying the cellular location of lead in lichens. Lichenologist 26: 83–90. CrossrefGoogle Scholar

  • [3] Branquinho C., Brown D.H. & Catarino F. 1997. Cellular location of Cu in lichens and its effect on membrane integrity and chlorophyll fluorescence. Environ. Exp. Bot. 38: 165–179. http://dx.doi.org/10.1016/S0098-8472(97)00015-4CrossrefGoogle Scholar

  • [4] Carrilho E.N. & Gilbert T.R. 2000. Assessing metal sorption on the marine alga Pilayella littoralis. J. Environ. Monit. 2: 410–415. http://dx.doi.org/10.1039/b004128iCrossrefGoogle Scholar

  • [5] Chojnacka K., Chojnacki A. & Górecka H. 2004. Trace metal removal by Spirulina sp. from copper smelter and refinery effluent. Hydrometallurgy 73: 147–153. http://dx.doi.org/10.1016/j.hydromet.2003.10.003CrossrefGoogle Scholar

  • [6] Cordero B., Lodeiro P., Herrero R. & de Vincente M.E.S. 2004. Biosorption of cadmium by Fucus spiralis. Environ. Chem. 1: 180–187. http://dx.doi.org/10.1071/EN04039CrossrefGoogle Scholar

  • [7] Ekinci Dogan C., Turhan K., Akcin G. & Aslan A. 2006. Biosorption of Au(III) and Cu(II) from aqueous solution by a non-living Cetraria islandica (L.) Ach. Annali di Chimica 96: 229–236. http://dx.doi.org/10.1002/adic.200690022CrossrefGoogle Scholar

  • [8] Fugueira R. & Ribeiro T. 2005. Transplants of aquatic mosses as biomonitors of metals released by mine effluents. Environ. Pollut. 136: 293–301. http://dx.doi.org/10.1016/j.envpol.2005.01.003CrossrefGoogle Scholar

  • [9] Gadd G.M. 1996. Influence of microorganisms on the environmental fate of radionuclides. Endeavour 20: 150–156. http://dx.doi.org/10.1016/S0160-9327(96)10021-1CrossrefGoogle Scholar

  • [10] Garty J. 2001. Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit. Rev. Plant Sci. 20: 309–371. http://dx.doi.org/10.1016/S0735-2689(01)80040-XCrossrefGoogle Scholar

  • [11] Haas J.R., Bailey E.H. & Purvis O.W. 1998. Bioaccumulation of metals by lichen: uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. Am. Mineralogist 83: 1494–1502. Google Scholar

  • [12] Khan A.S. 2003. Sorption of the long-lived radionuclides cesium-134, strontium-85 and cobalt-60 on bentonite. J. Radioanal. Nucl. Chem. 258: 3–6. http://dx.doi.org/10.1023/A:1026217020215CrossrefGoogle Scholar

  • [13] Kłos A., Rajfur M., Wacławek M. & Wacławek W. 2005. Ion equilibrium in lichen surrounding. Bioelectrochemistry 66: 95–103. http://dx.doi.org/10.1016/j.bioelechem.2004.04.006CrossrefGoogle Scholar

  • [14] Kočiová M., Pipíška M., Horník M. & Augustín J. 2005. Bioaccumulation of radiocesium by lichen Hypogymnia physodes. Biologia 60: 655–660. Google Scholar

  • [15] Kuyucak N. & Volesky B. 1989. Accumulation of cobalt by marine alga. Biotechnol. Bioeng. 33: 809–814. http://dx.doi.org/10.1002/bit.260330703CrossrefGoogle Scholar

  • [16] Ledin M., Pedersen K. & Allard B. 1997. Effect of pH and strength on the adsorption of Cs, Sr, Eu, Zn, Cd and Hg by Pseudomonas putida. Water Air Soil Pollut. 93: 367–381. Google Scholar

  • [17] Lloyd R.J. 2003. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 27: 411–425. http://dx.doi.org/10.1016/S0168-6445(03)00044-5CrossrefGoogle Scholar

  • [18] Lloyd R.J. & Macaskie L.E. 2000. Bioremediation of radionuclide-containing waste waters, pp. 277–327. In: Lovley D.R. (ed.) Environmental Microbe-metal Interactions, ASM Press, Washington, D.C. Google Scholar

  • [19] Low K.S., Lee C.K. & Liew S.C. 2000. Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem. 26: 59–64. http://dx.doi.org/10.1016/S0032-9592(00)00177-1CrossrefGoogle Scholar

  • [20] Mehta S.K. & Gaur J.P. 2005. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25: 113–152. http://dx.doi.org/10.1080/07388550500248571CrossrefGoogle Scholar

  • [21] Miklos L. (ed.) 2002. Landscape Atlas of the Slovak Republic (1st Ed.). Ministry of Environment of the Slovak Republic, Slovak Environmental Agency, Banská Bystrica, 344 pp. Google Scholar

  • [22] Mohapatra H. & Gupta R. 2005. Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresour. Technol. 96: 1387–1398. http://dx.doi.org/10.1016/j.biortech.2004.11.004CrossrefGoogle Scholar

  • [23] Monnet F., Bordas F., Deluchat V., Chatenet Ch., Botineau M. & Baudu M. 2005. Use of the aquatic lichen Dermatocarpon luridum as bioindicator of copper pollution: accumulation and cellular distribution tests. Environ. Pollut. 138: 455–461. http://dx.doi.org/10.1016/j.envpol.2005.04.019CrossrefGoogle Scholar

  • [24] Nash T.H. 1996. Lichen Biology. Cambridge University Press, Cambridge, U.K., 315 pp. Google Scholar

  • [25] Ohnuki T., Sakamoto F., Kozai N., Sakai T., Kamiya T., Satoh T. & Oikawa M. 2003. Micro-pixe study on sorption behavior of cobalt by lichen biomass. Nucl. Instrum. Methods Phys. Res. B 210: 407–411. http://dx.doi.org/10.1016/S0168-583X(03)01048-6CrossrefGoogle Scholar

  • [26] Pal A., Ghosh S. & Paul A.K. 2006. Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresour. Technol. 97: 1253–1258. http://dx.doi.org/10.1016/j.biortech.2005.01.043CrossrefGoogle Scholar

  • [27] Pipíška M., Horník M., Kočiová M., Augustín J. & Lesný J. 2005a. Radiostrontium uptake by lichen Hypogymnia physodes. Nukleonika 50(Suppl. 1): S39–S44. Google Scholar

  • [28] Pipíška M., Kočiová M., Horník M., Augustín J. & Lesný J. 2005b. Influence of time, temperature, pH and inhibitors on bioaccumulation of radiocaesium-37Cs by lichen Hypogymnia physodes. Nukleonika 50(Suppl. 1): S29–S37. Google Scholar

  • [29] Richardson D.H.S., Kiang S., Ahmadjian V. & Nieboer E. 1985. Lead and uranium uptake by lichens, pp. 227–246. In: Brown D.H. (ed.) Lichen Physiology and Cell Biology, Plenum Press, New York. Google Scholar

  • [30] Saeed A., Akhter M.W. & Iqbal M. 2005. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep. Purif. Technol. 45: 25–31. http://dx.doi.org/10.1016/j.seppur.2005.02.004CrossrefGoogle Scholar

  • [31] Sarret G., Cuny D., Van Haluwyn C., Déruelle S., Hazeman J.L., Soldo Y., Eybert-Bérart L. & Mentonnex J.J. 1998. Mechanisms of lichen resistance to metallic pollution. Environ. Sci. Technol. 32: 3325–3330. http://dx.doi.org/10.1021/es970718nCrossrefGoogle Scholar

  • [32] Schiewer S. & Volesky B. 2000. Biosorption process for heavy metal removal, pp. 329–362. In: Lovley D.R (ed.) Environmental Microbe-metal Interactions, ASM Press, Washington, D.C. Google Scholar

  • [33] Tewari P.H., Campbell A.V. & Lee W. 1972. Adsorption of Co2+ by oxides from aqueous solution. Can. J. Chem. 50: 1642–1648. http://dx.doi.org/10.1139/v72-263Google Scholar

  • [34] Vásquez M.D., López J. & Carballeira A. 1999. Modification of the sequential elution technique for the extraction of heavy metals from bryophytes. Sci. Total Environ. 241: 53–62. http://dx.doi.org/10.1016/S0048-9697(99)00337-XCrossrefGoogle Scholar

  • [35] Vijayaraghavan K., Jegan J., Palanivenu K. & Velan M. 2005. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 60: 419–426. http://dx.doi.org/10.1016/j.chemosphere.2004.12.016CrossrefGoogle Scholar

  • [36] Volesky B. 1994. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol. Rev. 14: 291–302. http://dx.doi.org/10.1111/j.1574-6976.1994.tb00102.xCrossrefGoogle Scholar

  • [37] Volesky B. & Holan Z.R. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11: 235–250. http://dx.doi.org/10.1021/bp00033a001CrossrefGoogle Scholar

  • [38] Závodská L., Lesný J., Szakál P. & Schmidt R. 2006. Basic characterisation and radiometric strontium sorption study of lignite from South-west Slovakia. Cereal Res. Commun. 34: 109–112. Google Scholar

Artikelinformationen

Online erschienen: 01.06.2007

Erschienen im Druck: 01.06.2007


Quellenangabe: Biologia, Band 62, Heft 3, Seiten 276–282, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-007-0047-y.

Zitat exportieren

© 2007 Institute of Molecular Biology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

[1]
Maha N. Haji and Alexander H. Slocum
Renewable and Sustainable Energy Reviews, 2019, Jahrgang 105, Seite 301
[2]
Lakshmi Prasanna Lingamdinne, Janardhan Reddy Koduru, Rajesh Kumar Jyothi, Yoon-Young Chang, and Jae-Kyu Yang
Desalination and Water Treatment, 2016, Jahrgang 57, Nummer 28, Seite 13066
[3]
Zeynep Kılıç, Orhan Atakol, Sümer Aras, Demet Cansaran-Duman, and Emel Emregul
Journal of the Air & Waste Management Association, 2014, Jahrgang 64, Nummer 10, Seite 1112
[4]
Janardhan Reddy Koduru, Yoon-Young Chang, Jae-Kyu Yang, and Im-Soon Kim
The Scientific World Journal, 2013, Jahrgang 2013, Seite 1
[5]
Vladimír Frišták, Martin Pipíška, Michaela Valovčiaková, Juraj Lesný, and Marián Rozložník
Journal of Radioanalytical and Nuclear Chemistry, 2014, Jahrgang 299, Nummer 3, Seite 1607
[6]
Jana Marešová, Martin Pipíška, Marián Rozložník, Miroslav Horník, Lucia Remenárová, and Jozef Augustín
Desalination, 2011, Jahrgang 266, Nummer 1-3, Seite 134
[7]
M. Pipíška, M. Horník, L. Vrtoch, J. Augustín, and J. Lesný
Chemistry and Ecology, 2008, Jahrgang 24, Nummer 3, Seite 181
[8]
Ahmet Sarı and Mustafa Tuzen
Separation Science and Technology, 2010, Jahrgang 45, Nummer 4, Seite 463
[9]
Ľ. Vrtoch, M. Pipíška, M. Horník, J. Augustín, and J. Lesný
Journal of Radioanalytical and Nuclear Chemistry, 2011, Jahrgang 287, Nummer 3, Seite 853
[10]
K. Yazici, B. Ertuğral, N. Damla, and G. Apaydın
Bulletin of Environmental Contamination and Toxicology, 2008, Jahrgang 80, Nummer 5, Seite 475

Kommentare (0)