Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 62, Issue 4

Issues

Diel microdistribution of physical and chemical parameters within the dense Chara bed and their impact on zooplankton

Natalia Kuczyńska-Kippen / Piotr Klimaszyk
Published Online: 2007-08-01 | DOI: https://doi.org/10.2478/s11756-007-0080-x

Abstract

Research on the diurnal distribution of physical and chemical parameters within a single macrophyte bed was carried out on the shallow Wielkowiejskie Lake (Poland). A non-parametric statistical analysis was used to compare the water quality features in different parts of a Chara hispida habitat including the middle, both edge (vertical and horizontal) parts of a macrophyte plant, and the open water next to-and above the stonewort stand.

The obtained results showed a differentiation in the physical-chemical parameters of the environmental conditions within the Chara hispida stand. The greatest variability was found for dissolved oxygen. Its lowest concentrations were noted in the central part of the macrophyte stand, irrespective of the sampling time.

The zooplankton communities within the examined Chara bed were strongly influenced by the concentration of dissolved oxygen. It was also found that two main components of zooplankton communities (rotifers and cladocerans) had a similar trend in their spatial and diurnal distribution within the stonewort stand.

Keywords: habitat characteristics; macrophytes; Chara hispida; nutrients; shallow lake; spatial distribution; oxygen; temperature

  • [1] Albay M. & Akcaalan R. 2003. Comparative study of periphyton colonization on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiol. 506(1): 531–540. http://dx.doi.org/10.1023/B:HYDR.0000008606.69572.f6CrossrefGoogle Scholar

  • [2] Basu B.K., Kalff J. & Pinel-Alloul B. 2000. The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St Lawrence River. Freshwat. Biol. 45: 373–382. http://dx.doi.org/10.1046/j.1365-2427.2000.00635.xCrossrefGoogle Scholar

  • [3] Blindow I. 1987. The composition and density of epiphyton on several species of submerged macrophytes — the neutral substrate hypothesis tested. Aquat. Bot. 29: 157–168. http://dx.doi.org/10.1016/0304-3770(87)90093-3CrossrefGoogle Scholar

  • [4] Burks R.L., Lodge D.M., Jeppesen E. & Lauridsen T.L. 2002. Diel horizontal migration of zooplankton costs and benefits of inhabiting the littoral. Freshwat. Biol. 47: 343–365. http://dx.doi.org/10.1046/j.1365-2427.2002.00824.xCrossrefGoogle Scholar

  • [5] Burns C.W. & Dodds A. 1999. Food limitation, predation and allelopathy in a population of Daphnia carinata. Hydrobiol. 400: 41–53. http://dx.doi.org/10.1023/A:1003798827352CrossrefGoogle Scholar

  • [6] Canfield D.E. Jr., Schireman J.V., Colle D.E., Haller W.T., Watkins C.E. II, & Maceina M.J. 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. Aquat. Sci. 41: 497–501. Google Scholar

  • [7] Carpenter S.R. & Lodge D.M. 1986. Effects of submerged macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370. http://dx.doi.org/10.1016/0304-3770(86)90031-8CrossrefGoogle Scholar

  • [8] Chick J.H. & McIvor C.C. 1994. Patterns in the abundance and composition of fishes among beds of different macrophytes: viewing a littoral zone as a landscape. Can. J. Fish. Aquat. Sci. 51: 2873–2882. Google Scholar

  • [9] Cyr H. & Downing J.A. 1988. The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshwat. Biol. 20: 365–337. http://dx.doi.org/10.1111/j.1365-2427.1988.tb00462.xCrossrefGoogle Scholar

  • [10] Dorgelo J. & Heycoop M. 1985. Avoidance of macrophytes by Daphnia longispina. Verh. Internat. Verein. Limnol. 22: 3369–3372. Google Scholar

  • [11] Dvorak J. & Best E.P.H. 1982. Macro-invertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. Hydrobiol. 95: 115–126. http://dx.doi.org/10.1007/BF00044479CrossrefGoogle Scholar

  • [12] Frodge J.D., Thomas G.L. & Pauley G.B. 1990. Effects of canopy formation on floating and submerged aquatic macrophytes on the water quality of two shallow Pacific NW lakes. Aquat. Bot. 38: 231–248. http://dx.doi.org/10.1016/0304-3770(90)90008-9CrossrefGoogle Scholar

  • [13] Gilbert J.J. 1989. Competitive interactions between the rotifer Synchaeta oblonga and the cladoceran Scapholeberis kingi Sars. Hydrobiol. 186/187: 75–80. http://dx.doi.org/10.1007/BF00048899CrossrefGoogle Scholar

  • [14] Gopal B. & Goel U. 1993. Competition and allelopathy in aquatic plant communities. Bot. Rev. 59: 155–219. Google Scholar

  • [15] Gross E.M., Erhard D. & Ivanyi E. 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina spp. intermedia (Wolfgang) Casper. Hydrobiol. 506–509: 583–589. http://dx.doi.org/10.1023/B:HYDR.0000008539.32622.91CrossrefGoogle Scholar

  • [16] Hasler A.D. & Jones E. 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 359–364. http://dx.doi.org/10.2307/1932616CrossrefGoogle Scholar

  • [17] Irvine K., Balls H. & Moss B. 1990. The entomostracan and rotifer communities associated with submerged plants in the Norfolk Broadland — Effect of plant biomass and species composition. Int. Rev. ges. Hydrobiol. 75: 121–141. http://dx.doi.org/10.1002/iroh.19900750202CrossrefGoogle Scholar

  • [18] Jańczak J., Brodzińska B., Kowalik A. & Sziwa R. 1996. Atlas of Lakes of Poland. T. I. Bogucki, Wydawnictwo Naukowe, Poznań. Google Scholar

  • [19] Kleiven S. & Szczepańska W. 1988. The effects of extracts from Chara tomentosa and two other aquatic macrophytes on seed germination. Aquatic Botany 32: 193–198. http://dx.doi.org/10.1016/0304-3770(88)90099-XCrossrefGoogle Scholar

  • [20] Klimaszyk P., Kraska M., Piotrowicz R. & Joniak, T. 2003. Functioning of small water bodies of the Wielkopolski National Park (western Poland). Verh. int. Ver. Limnol. 28,IV: 1735–1738. Google Scholar

  • [21] Kuczyńska-Kippen N. 2006. The diurnal distribution of rotifers (Rotifera) within a single Chara hispida bed. J. Freshw. Ecol. 21,IV: 553–559. Google Scholar

  • [22] Kuczyńska-Kippen N., Messyasz B. & Nagengast B. 2005. Comparative study of periphyton communities on rush complex and Chara tomentosa in three shallow lakes of Wielkopolska area, Poland. Biologia 60: 349–355. Google Scholar

  • [23] Kuczyńska-Kippen N. & Nagengast B. 2003. The impact of the spatial structure of hydromacrophytes on the similarity of rotifera communities (Budzyńskie Lake, Poland). Hydrobiol. 506(1): 333–338. http://dx.doi.org/10.1023/B:HYDR.0000008542.76373.44CrossrefGoogle Scholar

  • [24] Lampert W. & Sommer U. 2001. Ekologia wód sŕódlądowych. Wydawnictwo Naukowe PWN, 392 pp. Google Scholar

  • [25] Lillie R.A. & Budd J. 1992. Habitat architecture of Myriophyllum spicatum L. As an index to habitat quality for fish and macroinvertebrates. J. Freshwat. Ecol. 7: 113–125. Google Scholar

  • [26] Lodge D.M. 1985. Macrophyte-gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshwat. Biol. 15: 695–708. http://dx.doi.org/10.1111/j.1365-2427.1985.tb00243.xCrossrefGoogle Scholar

  • [27] Mastyński J., Andrzejewski W. & Czarnecki M. 1998. Ichtyofauna of the Wielkopolski National Park. In: Burchardt L. (ed.), Program for Protection of Water Ecosystems of Wielkopolski National Park. Wielkopolski National Park Directory, Poznań-Jeziory. Google Scholar

  • [28] Messyasz B. 2001. The characteristics of the phycoflora structure of lakes and ponds in the Wielkopolski National Park. In: Burchard L. (ed.), Water Ecosystems of Wielkopolski National Park. Wydawnictwo Naukowe UAM, Poznań. Google Scholar

  • [29] Nakai S., Inoue Y., Hosomi M. & Murakami A. 1999. Growth inhibition of blue-green algae by allelopathic effect of macrophytes. Wat. Sci Tech. 39(8): 47–53. http://dx.doi.org/10.1016/S0273-1223(99)00185-7CrossrefGoogle Scholar

  • [30] Ondok J.P. 1978. Radiation climate in fish pond littoral plant communities. In: Dykyjová D. & Květ J. (eds), Pond littoral ecosystems — Structure and functioning. Ecol. Studies 28: 113–125. Google Scholar

  • [31] Pip E. & Stewart J.M. 1976. The dynamics of two aquatic plantsnail associations. Can. J. Zool. 54: 1192–1205. http://dx.doi.org/10.1139/z76-136CrossrefGoogle Scholar

  • [32] Sand Jensen K. & Borum J. 1984. Epiphyte shading and its effect of photosynthesis and diel metabolism of Lobelia dortmanna during the spring bloom in a Danish lake. Aquat. Bot. 20: 109–120. http://dx.doi.org/10.1016/0304-3770(84)90031-7CrossrefGoogle Scholar

  • [33] Scheffer M. 2001. Ecology of Shallow Lakes. Kluwer Academic Publishers, Dordrecht, Boston, London, 357 pp. Google Scholar

  • [34] Sheldon S.P. 1987. The effects of herbivorous snails on submerged macrophytes communities in Minnesota lakes. Ecology 68: 1920–1931. http://dx.doi.org/10.2307/1939883CrossrefGoogle Scholar

  • [35] Standard Methods for Examination of Water and Wastwater, 1992. American Public Health Association, New York, 1137 pp. Google Scholar

  • [36] Strickland J.D. & Parsons T.R. 1972. A practical Handbook of Seawater Analysis (2nd Ed). Bull. Fish. Res. Bd Can., 167pp. Google Scholar

  • [37] Wickham S.A. & Gilbert J.J. 1990. Relative vulnerability of natural rotifer and ciliate communities to cladocerans: laboratory and field experiments. Freshwat. Biol. 26: 77–86. http://dx.doi.org/10.1111/j.1365-2427.1991.tb00510.xCrossrefGoogle Scholar

  • [38] Wium-Andersen S., Anthoni U., Christophersen C, & Hoen G. 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187–190. http://dx.doi.org/10.2307/3544484CrossrefGoogle Scholar

About the article

Published Online: 2007-08-01

Published in Print: 2007-08-01


Citation Information: Biologia, Volume 62, Issue 4, Pages 432–437, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-007-0080-x.

Export Citation

© 2007 Institute of Botany, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Katarzyna Kowalczewska-Madura, Renata Dondajewska, Ryszard Gołdyn, Joanna Rosińska, and Stanisław Podsiadłowski
Annales de Limnologie - International Journal of Limnology, 2019, Volume 55, Page 4
[3]
Anna Kozak, Sofia Celewicz-Gołdyn, and Natalia Kuczyńska-Kippen
Science of The Total Environment, 2019, Volume 646, Page 1578
[4]
Ryszard Gołdyn, Barbara Szpakowska, Dariusz Świerk, Piotr Domek, Jan Buxakowski, Renata Dondajewska, Danuta Barałkiewicz, and Adam Sajnóg
Science of The Total Environment, 2018, Volume 625, Page 743
[5]
Maria Špoljar, Tvrtko Dražina, Ivan Habdija, Matija Meseljević, and Zlatko Grčić
International Review of Hydrobiology, 2011, Volume 96, Number 2, Page 175
[6]
Maria Špoljar, Jelena Fressl, Tvrtko Dražina, Matija Meseljević, and Zlatko Grčić
Acta Botanica Croatica, 2012, Volume 71, Number 1
[8]
Natalia Kuczynska-Kippen
Journal of Freshwater Ecology, 2008, Volume 23, Number 4, Page 643
[9]
Piotr Klimaszyk and Damian Heymann
Oceanological and Hydrobiological Studies, 2010, Volume 39, Number 4

Comments (0)

Please log in or register to comment.
Log in