Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

See all formats and pricing
More options …
Volume 62, Issue 5


Plant transpiration and net entropy exchange on the Earth’s surface in a Czech watershed

Miroslav Tesař
  • Institute of Hydrodynamics, Academy of Sciences of the Czech Republic, Pod Paťankou 30/5, CZ-16612, Praha 6, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miloslav Šír
  • Institute of Hydrodynamics, Academy of Sciences of the Czech Republic, Pod Paťankou 30/5, CZ-16612, Praha 6, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ľubomír Lichner / Jan Čermák
  • Faculty of Forestry and Wood Technology, Institute of Forest Ecology, Mendel University of Agriculture and Forestry, Zemědělská 3, CZ-61300, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-10-01 | DOI: https://doi.org/10.2478/s11756-007-0108-2


The influence of plant transpiration on the entropy exchange was quantified as associated with the degradation of solar energy on the Earth’s surface covered by plants. Two surfaces were studied: (1) productive surface — plant transpiration taken as equal to the potential one, (2) non-productive surface — plant transpiration taken as equal to zero. The entropy exchanges associated with the absorption of solar radiation and with the conversion of absorbed solar radiation into the sensible heat and latent heat were taken into account. These processes were examined in the experimental watershed Liz (828–1074 m a.s.l.) located in the Bohemian Forest (Czech Republic). We found that in the growing season 1992 the net entropy exchange in humid hydrologic period (the Earth’s surface is productive) was considerably higher than in the arid one (the Earth’s surface was productive in 39% of days, and non-productive in 61% of days). Considering that the biotic effect on the Earth’s functioning can be measured with the help of the net entropy exchange, we can assume that the theory that biotic activities — represented by plant transpiration here — are the cause of the self-organizing processes in Earth’s environment is proved in the watershed scale.

Keywords: entropy; Gaia theory; hydrologic period; plant transpiration

  • [1] Kirchner J.W. 2003. The Gaia hypothesis: Conjectures and refutations. Climatic Change 58: 21–45. http://dx.doi.org/10.1023/A:1023494111532CrossrefGoogle Scholar

  • [2] Kleidon A. 2002. Testing the effect of life on Earthĺs functioning: How Gaian is the Earth system? Climatic Change 52: 383–389. http://dx.doi.org/10.1023/A:1014213811518CrossrefGoogle Scholar

  • [3] Kleidon A. 2006. Quantifying the biologically possible range of steady-state soil and surface climates with climate model simulations. Biologia 61(Suppl. 19): S234–S239. http://dx.doi.org/10.2478/s11756-006-0164-zCrossrefGoogle Scholar

  • [4] Kleidon A., Fraedrich K. & Heimann M. 2000. A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate. Climatic Change 44: 471–493. http://dx.doi.org/10.1023/A:1005559518889CrossrefGoogle Scholar

  • [5] Kleidon A. & Lorenz R.D. 2005. Entropy production by Earth system processes. In: Kleidon A. & Lorenz R.D. (eds), Nonequilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond. Springer Verlag, Heidelberg. Google Scholar

  • [6] Lenton T.M. & Wilkinson D.M. 2003. Developing the Gaia theory. Climatic Change 58: 1–12. http://dx.doi.org/10.1023/A:1023498212441CrossrefGoogle Scholar

  • [7] Lovelock J.E. & Margulis L. 1974. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26: 2–10. http://dx.doi.org/10.1111/j.2153-3490.1974.tb01946.xCrossrefGoogle Scholar

  • [8] Novák V. & Havrila J. 2006. Method to estimating the critical soil water content of limited availability for plants. Biologia, Bratislava 61(Suppl. 19): S289–S293. http://dx.doi.org/10.2478/s11756-006-0175-9CrossrefGoogle Scholar

  • [9] Pokorný J. 2001. Dissipation of solar energy in landscape — controlled by management of water and vegetation. Renewable Energy 24: 641–645. http://dx.doi.org/10.1016/S0960-1481(01)00050-7CrossrefGoogle Scholar

  • [10] Pražák J., Šír M. & Tesař M. 1994. Estimation of plant transpiration from meteorological data under conditions of sufficient soil moisture. J. Hydrol. 162: 409–427. http://dx.doi.org/10.1016/0022-1694(94)90239-9CrossrefGoogle Scholar

  • [11] Ripl W. 1995. Management of water cycle and energy flow for ecosystem control — the energy-transport-reaction (ETR) model. Ecological Modelling 78: 61–76. http://dx.doi.org/10.1016/0304-3800(94)00118-2CrossrefGoogle Scholar

  • [12] Roland-Mieskowski M. 2007. Life on Earth — flow of energy and entropy. Digital Recordings — Advanced R&D, Canada. (www.digital-recordings.com) Google Scholar

  • [13] Šír M., Lichner Ľ., Tesař M. & Syrovátka O. 2004. Retention — evapotranspiration unit. XXIInd Conference of the Danubian Countries of the Hydrological Forecasting and Hydrological Bases of Water Management, 30 August–2 September 2004, Brno, Czech Republic, Conference Abstracts and CD. Google Scholar

  • [14] Tesař M., Šír M., Syrovátka O., Pražák J., Lichner L. & Kubík F. 2001. Soil water regime in head water regions — observation, assessment and modelling. J. Hydrol. Hydromech. 49: 355–375. Google Scholar

  • [15] Tesař M., Šír M., Lichner Ľ. & Zelenková E. 2006. Influence of vegetation cover on thermal regime of mountainous catchments. Biologia 61(Suppl. 19): S311–S314. http://dx.doi.org/10.2478/s11756-006-0179-5CrossrefGoogle Scholar

  • [16] Tributsch H., Čermák J. & Nadezhdina N. 2005. Kinetic studies on tensile state of water in trees. J. Phys. Chem. B 109: 1693–1707. http://dx.doi.org/10.1021/jp051242uCrossrefGoogle Scholar

  • [17] Volk T. 2003a. Seeing deeper into Gaia theory. Climatic Change 57: 5–7. http://dx.doi.org/10.1023/A:1022193813703CrossrefGoogle Scholar

  • [18] Volk T. 2003b. Natural selection, Gaia, and inadverted byproducts. Climatic Change 58: 13–19. http://dx.doi.org/10.1023/A:1023463510624CrossrefGoogle Scholar

About the article

Published Online: 2007-10-01

Published in Print: 2007-10-01

Citation Information: Biologia, Volume 62, Issue 5, Pages 547–551, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-007-0108-2.

Export Citation

© 2007 Institute of Botany, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tomáš Šatala, Miroslav Tesař, Miriam Hanzelová, Martin Bartík, Václav Šípek, Jaroslav Škvarenina, Jozef Minďáš, and Pavla Dagsson Waldhauserová
Biologia, 2017, Volume 72, Number 8
Jaroslav Vido, Katarína Střelcová, Paulína Nalevanková, Adriana Leštianska, Radoslav Kandrík, Alena Pástorová, Jaroslav Škvarenina, and Tsegaye Tadesse
Journal of Hydrology and Hydromechanics, 2016, Volume 64, Number 3
Ewa M. Miedziejko and Andrzej Kędziora
Ecological Modelling, 2014, Volume 289, Page 15
Miloslav Šír, Miroslav Tesař, Ľubomír Lichner, and Henryk Czachor
Biologia, 2014, Volume 69, Number 11
Wensai Zhao, Yonglin Sun, Roger Kjelgren, and Xiping Liu
Acta Physiologiae Plantarum, 2015, Volume 37, Number 1
Katarína Střelcová, Jiří Kučera, Peter Fleischer, Stefano Giorgi, Erika Gömöryová, Jaroslav Škvarenina, and Ľubica Ditmarová
Biologia, 2009, Volume 64, Number 3

Comments (0)

Please log in or register to comment.
Log in