Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 1, 2007

Allozyme variations in six natural populations of scots pine (Pinus sylvestris) in Turkey

  • Behiye Bilgen EMAIL logo and Nuray Kaya
From the journal Biologia

Abstract

Genetic variation in six natural populations of Scots pine (Pinus sylvestris L.) was determined with isoenzyme analyses. For this purpose, haploid female gametophytes of seeds and horizontal starch gel electrophoresis technique were used. A total of 17 loci and 58 alleles were observed in studying 10 enzyme systems. The average proportion of polymorphic loci for populations ranged from 58.8% to 70.6%. The average number of alleles per locus per population was 2.65. The mean estimated expected heterozygosity (He) of populations was 0.294. A rather high proportion of genetic diversity (96.4%) was due to within-population variation and the remaining (3.6%) was due to variation among populations. The level of gene flow (Nem) was found to be 6.69 per generation. Nei’s genetic distance coefficient ranged from 0.006 to 0.027 (mean 0.017) among all possible population pairs. The mean value of Nei’s genetic distance is similar to the values reported for other European Scots pine populations. The low mean value of Nei’s genetic distance among populations is enough to explain low interpopulation variation. According to genetic variation parameters, three out of six populations (Akdagmadeni-Yozgat, Refahiye-Erzincan and Vezirkopru-Samsun) appear to be preferable populations for genetic conservation and forest tree breeding programs.

[1] Cepel N., Dundar M. & Gunel A. 1977. Türkiye’nin önemli yetişme bögelerinde saf sarıçam ormanlarının gelişimi ile bazı edafik ve fizyografik etkenler arasındaki ilişkiler. TUBITAK yayinlari, No. 354. Search in Google Scholar

[2] Cheddadi R., Vendramin G.G., Litt T., Françios L., Kageyama M., Lorentz S., Laurent JM., Beaulieu JL., Sadori L., Jost A. & Lunt D. 2006. Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecol. Biogeograph. 15: 271–282. 10.1111/j.1466-822X.2006.00226.xSearch in Google Scholar

[3] Cheliak W.M. & Pitel J.A. 1985. Inheritance and linkage of allozymes in Larix laricina. Silvae Genetica 34: 142–148. Search in Google Scholar

[4] Conkle M.T., Hodgskiss P.O., Nunnally L.B. & Hunter S.C. 1982. Starch gel electrophoresis of Conifer seeds: A Laboratory Manual. U.S.D.A. Gen. Techn. Rept. PSW-64, 18 pp. 10.2737/PSW-GTR-64Search in Google Scholar

[5] Conkle M.T., Schiller G. & Grunwald C. 1988. Electrophoretic analysis of diversity and phylogeny of Pinus brutia and closely related taxa. System. Bot. 13(3): 411–424. http://dx.doi.org/10.2307/241930110.2307/2419301Search in Google Scholar

[6] Dvornyk V. 2001. Genetic variability and differentiation of geographically marginal Scots pine populations from Ukraine. Silvae Genetica 50(2): 64–69. Search in Google Scholar

[7] Ekim T. & Guner A. 1986. The Anatolian diagonal: fact or fiction? Proceedings of the Royal Soc. of Edinburgh, 89B: 69–77. Search in Google Scholar

[8] Giannini R., Morgante M. & Vendramin G.G. 1991. Allozyme variation in Italian populations of Picea abies (L.) Karst. Silvae Genetica 40: 160–166. Search in Google Scholar

[9] Giray N. 1994. Pinus sylvestris. Ormancilik Arastirma Enstitusu Yayinlari, El Kitabi Dizisi: 7, Ankara. (in Turkish) Search in Google Scholar

[10] Goncharenko G.G., Silin A.E. & Padutov V.E. 1994. Allozyme variation in natural population of Eurasian pines. III. Silvae Genetica 43(2–3): 119–131. Search in Google Scholar

[11] Gullberg U., Yazdani R., Rudin D. & Ryman N. 1985. Allozyme variation in Scots pine (Pinus sylvestris L.) in Sweden. Silvae Genetica 34(6): 193–200. Search in Google Scholar

[12] Hamrick J.L., Mitton J.B. & Linhart Y.B. 1981. Levels of genetic variation in trees: Influence of life history characteristics, pp. 35–41. In: Conkle, M.T. (ed.) Proc. of Symp. on Isozymes of North American Forest Trees and Insects. USDA Gen. Tech. Rep. PSW-48. Search in Google Scholar

[13] Hamrick J.L. & Godt M.J. 1989. Allozyme diversity in plant species, pp 43–63. In: Brown A.H.D., Clegg M.T., Kahler A.L. & Weir B.S. (eds), Plant Population Genetics, Breeding and Germplasm Resources. Sinauer, Sunderland, Mass. Search in Google Scholar

[14] Hamrick J.L., Godt M.J.W. & Shermann-Broyles S.L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124. http://dx.doi.org/10.1007/BF0012064110.1007/BF00120641Search in Google Scholar

[15] Howe G.T., Aitken S.N., Neale D.B., Jermstad K.D., Wheeler N.C. & Chen T.H.H. 2003. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can. J. Bot. 81: 1247–1266. http://dx.doi.org/10.1139/b03-14110.1139/b03-141Search in Google Scholar

[16] Isik F., Isik K. & Lee S.J. 1999. Genetic variation in Pinus brutia Ten. in Turkey: I. Growth, biomass and stem quality traits. Int. J. Forest Genet. 6(2): 89–99. Search in Google Scholar

[17] Isik K. & Kara N. 1997. Altitudinal variation in Pinus brutia Ten. and its implication in genetic conservation and seed transfers in Southern Turkey. Silvae Genetica 46(2–3): 113–120. Search in Google Scholar

[18] Kara N. 1996. Investigation on izoenzyme variation in natural populations of Turkish red pine (Pinus brutia Ten.). M.Sc. Thesis, Akdeniz University, Institute of Sciences, Antalya, 77 pp. (in Turkish) Search in Google Scholar

[19] Kara N., Korol L., Isik K. & Schiller G. 1997. Genetic diversity in Pinus brutia Ten.: Altitudinal variation. Silvae Genetica 46(2–3): 155–160. Search in Google Scholar

[20] Kinloch B.B., Westfall R.D. & Forrest G.I. 1986. Caledonian Scots pine: origins and genetic structure. New Phytol. 104: 703–729. http://dx.doi.org/10.1111/j.1469-8137.1986.tb00671.x10.1111/j.1469-8137.1986.tb00671.xSearch in Google Scholar PubMed

[21] Korshikov I.I., Velikoridko T.I. & Butilskaya L.A. 2002. Genetic structure and variation in Pinus sylvestris L. populations degrading due to pollution-induced injury. Silvae Genetica 51(2–3): 45–49. Search in Google Scholar

[22] Matyas C., Ackzell L. & Samuel C.J. A. 2004. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Scots pine (Pinus sylvestris). Int. Plant Genetic Resources Institute, Rome, Italy, 6 p. Search in Google Scholar

[23] Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. 70(12): 3321–3323. http://dx.doi.org/10.1073/pnas.70.12.332110.1073/pnas.70.12.3321Search in Google Scholar PubMed PubMed Central

[24] Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590. 10.1093/genetics/89.3.583Search in Google Scholar PubMed PubMed Central

[25] Prus-Glowacki W. & Bernard E. 1994. Allozyme variation in populations of Pinus sylvestris L. from a 1912 provenance trial in Pulawy (Poland). Silvae Genetica 43(2–3): 132–138. Search in Google Scholar

[26] Prus-Glowacki W. & Stephan B.R. 1994. Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genetica 43(1): 7–14. Search in Google Scholar

[27] Sharma K., Degen B., Von Wuehlisch G. & Singh N.B. 2002. Allozyme variation in eight natural populations of Pinus roxburghii SARG. in India. Silvae Genetica 51(5–6): 246–253. Search in Google Scholar

[28] Slavov G.T. & Zhelev P. 2004. Allozyme variation, differentiation, and inbreeding in populations of Pinus mugo in Bulgaria. Can. J. For. Res. 34: 2611–2617. http://dx.doi.org/10.1139/x04-12710.1139/x04-127Search in Google Scholar

[29] Swofford D.L. & Salender R.B. 1981. BIOSYS-1: A Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283. 10.1093/oxfordjournals.jhered.a109497Search in Google Scholar

[30] Turna I. 2003. Variation of morphological and electrophoretic characters of 11 populations of Scots pine in Turkey. Israel J. Plant Sci. 51(3): 223–230. http://dx.doi.org/10.1560/M4RX-QBGM-JVYQ-74B810.1560/M4RX-QBGM-JVYQ-74B8Search in Google Scholar

[31] Unal B.B. 2005. Determination of genetic variation in natural populations of Scots pine [Pinus sylvestris L. (Pinaceae)]. M.Sc. Thesis, Akdeniz University, Institute of Sciences, Antalya, 89 pp. (in Turkish) Search in Google Scholar

[32] Willis K.J., Bennett K.D. & Birks H. J. 1998. The Late Quartetrnary dynamics of pines in Europa, pp. 107–121. In: David M. Richardson (ed.), Ecology and Biogeography of Pinus. Cambridge University Press, 545 pp. Search in Google Scholar

[33] Wright S. 1951. The genetical structure of populations. Ann. Eugenics 15: 323–354. 10.1111/j.1469-1809.1949.tb02451.xSearch in Google Scholar PubMed

[34] Yahyaoglu Z., Genc M., Ucler A.O. & Gunes I. 1994. Bazi saricam (Pinus sylvestris L.) populasyonlarinda genetik yapinin elektroforetik yontemlerle analizi II. II. Ulusal Biyoteknoloji Simpozyumu. Bildiri ve Poster Ozetleri. Ankara. Search in Google Scholar

Published Online: 2007-12-1
Published in Print: 2007-12-1

© 2007 Institute of Botany, Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-007-0127-z/html
Scroll to top button