Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 62, Issue 6


Screening of different contaminated environments for polyhydroxyalkanoates-producing bacterial strains

Shafiq Rehman / Nazia Jamil / Shahida Husnain
Published Online: 2007-12-01 | DOI: https://doi.org/10.2478/s11756-007-0144-y


Total sixteen bacterial strains were isolated and purified from the samples collected from sugarcane molasses soil, sewage water and long-chain-hydrocarbon-contaminated area of the Punjab University, Lahore, Pakistan. Tolerance to different antibiotics was studied and strains showed multiple antibiotic resistance. All strains were characterized for Gram stain, biochemical reactions and polyhydroxyalkanoate (PHA) production. Total fourteen strains were Gram negative and two were Gram positive, while biochemically nine PHA producers showed affiliation to Pseudomonas, Enterobacter, Citrobacter, Bacillus and Escherichia. Screening for PHA production was done by Sudan black staining and nine out of sixteen strains exhibited PHA producing ability. PHA production was optimized for different growth parameters, like nitrogen concentration, pH and temperature. PHA extraction was done by solvent extraction method. Bacterial strains US1 and M1 accumulated up to 30% PHA of their cell dry weight on PHA extraction by solvent extraction method. Bacterial strain US1 was identified by 16S rRNA gene analysis as P. aeruginosa (DQ455691). PHA production was confirmed by PCR amplification of 500 bp fragment from PHA polymerase (Pha C) gene; five strains from nine PHA producers gave positive results on PCR. Pha C gene fragment of US1 was sequenced and submitted to Gene Bank under the accession number DQ455690. The amino acid sequence showed homology using the protein BLAST at 129–132 sites with different PHA synthases of the Pseudomonas sp.

Keywords: sewage water; polyhydroxyalkanoates; PhaC gene; Pseudomonas sp; conserved gene

  • [1] Akiyama M., Taima Y. & Doi Y., 1992. Production of poly (3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl. Microbiol. Biotechnol. 37: 698–701. http://dx.doi.org/10.1007/BF00174830CrossrefGoogle Scholar

  • [2] Atlas R.M. 1984. Use of microbial diversity measurements to assess environmental stress, pp. 540–545. In: Klug M.J. & Reddy C.A. (eds), Current Perspectives in Microbial Ecology, American Society of Microbiology, Washington. Google Scholar

  • [3] Bruce A.R., Lomaliza K., Chavarie C., Dube B., Bataille P. & Juliana A. R., 1990. Production of poly-(β-hydroxybutyric-Co-β-hydroxyvaleric) acids. Appl. Environ. Microbiol. 56: 2093–2098. Google Scholar

  • [4] Cameron S. 2002. Phenotypic and genotypic investigations into fluoroquinolone resistance in the genus Acinetobacter. Ph.D. Thesis, University of Dundee. Google Scholar

  • [5] Cheesbrough M. 2001. District Laboratory Practice in Tropical Countries, Part 2. Cambridge University Press, Cambridge. Google Scholar

  • [6] De Lima S.T.C., Berno M. & Christina M. 1999. Bacteria isolated from sugarcane agroecosystem: their potential production of polyhydroxyalkanoates and resistance to antibiotics. Rev. Microbiol. 30: 214–224. http://dx.doi.org/10.1590/S0001-37141999000300006CrossrefGoogle Scholar

  • [7] Du G., Chen J., Yu J. & Lun S. 2001. Continuous production of poly-3-hydroxybutyrate by Ralstonia eutrophus in a two-stage culture system. J. Biotechnol. 88: 59–65. http://dx.doi.org/10.1016/S0168-1656(01)00266-8CrossrefGoogle Scholar

  • [8] Du G. & Yu J. 2002. Green technology for conversion of food scraps to biodegradable thermoplastic. Environ. Sci. Technol. 36: 5511–5516. http://dx.doi.org/10.1021/es011110oCrossrefGoogle Scholar

  • [9] Hein H., Paletta J.R.J. & Steinbüchel A. 2002. Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases PhaC1 and PhaC2. Appl. Microbiol. Biotechnol. 58: 229–236. http://dx.doi.org/10.1007/s00253-001-0863-xCrossrefGoogle Scholar

  • [10] Huisman G.W., Wonink E., Meima R., Kazemier B., Terptra P. & Withholt B. 1991. Metabolism of poly (3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266: 2191–2198. Google Scholar

  • [11] Lee S.Y. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1–14. http://dx.doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-PCrossrefGoogle Scholar

  • [12] Lee S.P & Choi J. 1999. Polyhydroxyalkanoates: Biodegradable Polymer, pp. 616–627. In: Arnold L., Demain J. & Davis E. (eds) Manual of Industrial Microbiology and Biotechnology, American Society of Microbiology, Washington. Google Scholar

  • [13] Matsusaki H., Manji S., Taguchi K., Kato M., Fukui T. & Doi Y. 1998. Cloning and molecular analysis of the poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61–3. J. Bacteriol. 180: 6459–6467. Google Scholar

  • [14] Ojumu T.V., Yu J. & Solomon B.O. 2004. Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. African J. Biotechnol. 3: 18–24. Google Scholar

  • [15] Oliveira R.C., Jose G.C., Gomez T.B.B., Netto B. L.C. & Da Silva L.F. 2000. A suitable procedure to choose antimicrobials as controlling agents in fermentations performed by bacteria. Brazilian J. Microbiol. 31: 87–89. Google Scholar

  • [16] Page W.J. 1989. Production of poly-β-hydroxybutyrate by Azotobacter vinelandii strain UWD during growth on molasses and other complex carbon sources. Appl. Microbiol. Biotechnol. 31: 329–333. http://dx.doi.org/10.1007/BF00257598CrossrefGoogle Scholar

  • [17] Poirier Y., Nawrath C. & Somerville C. 1995. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers in bacterial and plant. Bio/Technol. 13: 142–150. http://dx.doi.org/10.1038/nbt0295-142CrossrefGoogle Scholar

  • [18] Steinbuchel A. & Hein S. 2001. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv. Biochem. Eng. Biotechnol. 71: 81–123. Google Scholar

  • [19] Qi Q. & Rehm B. H. 2001. Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiol. 147: 3353–3358. Google Scholar

  • [20] Qi Q.S., Rehm B.H.A. & Steinbüchel A. 1997. Synthesis of poly (3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene PhaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol. Lett. 157: 155–162. http://dx.doi.org/10.1111/j.1574-6968.1997.tb12767.xGoogle Scholar

  • [21] Rafael G., Mercedes M. & Alberto R. 2001. Production of polyhydroxyalkanoates by Pseudomonas putida KT2442 harboring pSK2665 in wastewater from olive oil mills (alpechín). Electronic J. Biotechnol. 4: 116–119. Google Scholar

  • [22] Rehm B.H.A. 2003. Polyester synthases: natural catalysts for plastics. Biochem. J. 376: 15–33. http://dx.doi.org/10.1042/BJ20031254CrossrefGoogle Scholar

  • [23] Sambrook J. & Russell D.W. 2001. Molecular Cloning, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. Google Scholar

  • [24] Schlegel H.G., Lafferty R. & Krauss I. 1970. The isolation of mutants not accumulating polyhydroxybutyric acid. Arch. Microbiol. 71: 283–294. Google Scholar

  • [25] Shamala T.R., Chandrashekar A., Vijendra S.V.N. & Kshama L. 2003. Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J. Appl. Microbiol. 94: 369–374. http://dx.doi.org/10.1046/j.1365-2672.2003.01838.xCrossrefGoogle Scholar

  • [26] Solaiman D.K.Y., Ashby R.D. & Foglia T.A. 2000. Rapid and specific identification of medium-chain length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53: 690–694. http://dx.doi.org/10.1007/s002530000332CrossrefGoogle Scholar

  • [27] Timm A. & Steinbüchel A. 1992. Cloning and molecular analysis of the poly (3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur. J. Biochem. 209: 15–30. http://dx.doi.org/10.1111/j.1432-1033.1992.tb17256.xCrossrefGoogle Scholar

  • [28] Yamane T., Chen X. F. & Ueda S. 1996. Growth-associated production of poly(3-hydroxyvalerate) from n-pentanol by a methylotrophic bacterium, Paracoccus denitrificans. Appl. Environ. Microbiol. 62: 380–384. Google Scholar

  • [29] Yuksekdag Z.N., Aslim B., Beyatli Y. & Mercan N. 2004. Effect of carbon and nitrogen sources and incubation times on poly-β-hydroxybutyrate (PHB) synthesis by Bacillus subtilis 25 and Bacillus megaterium 12. African J. Biotechnol. 3: 63–66. Google Scholar

  • [30] Zhang H., Obias V., Gonyer K. & Dennis D. 1994. Production of polyhydroxyalkanoates in sucrose utilizing recombinant Escherichia coli and Klebsiella strains. Appl. Environ. Microbiol. 60: 1198–1205. Google Scholar

About the article

Published Online: 2007-12-01

Published in Print: 2007-12-01

Citation Information: Biologia, Volume 62, Issue 6, Pages 650–656, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-007-0144-y.

Export Citation

© 2007 Institute of Molecular Biology, Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Pinkee Phukon, Mayur Mausoom Phukan, Sankur Phukan, and Bolin Kumar Konwar
Annals of Microbiology, 2014, Volume 64, Number 4, Page 1567
Pinkee Phukon, Keisham Radhapyari, Bolin Kumar Konwar, and Raju Khan
Materials Science and Engineering: C, 2014, Volume 37, Page 314
Farha Masood, P. Chen, Tariq Yasin, Fariha Hasan, Bashir Ahmad, and Abdul Hameed
Journal of Materials Science: Materials in Medicine, 2013, Volume 24, Number 8, Page 1927
Pinkee Phukon, Binod Pokhrel, B. K. Konwar, and S. K. Dolui
Biotechnology Letters, 2013, Volume 35, Number 4, Page 607
Farha Masood, Fariha Hasan, Safia Ahmed, P. Chen, and Abdul Hameed
Journal of Polymers and the Environment, 2012, Volume 20, Number 3, Page 865
Pinkee Phukon, Jyoti Prasad Saikia, and Bolin Kumar Konwar
Colloids and Surfaces B: Biointerfaces, 2012, Volume 92, Page 30
Farha Masood, Fariha Hasan, Safia Ahmed, and Abdul Hameed
Annals of Microbiology, 2012, Volume 62, Number 4, Page 1377
Pinkee Phukon, Jyoti Prasad Saikia, and Bolin Kumar Konwar
Colloids and Surfaces B: Biointerfaces, 2011, Volume 86, Number 2, Page 314
Waqas Nasir Chaudhry, Nazia Jamil, Iftikhar Ali, Mian Hashim Ayaz, and Shahida Hasnain
Annals of Microbiology, 2011, Volume 61, Number 3, Page 623

Comments (0)

Please log in or register to comment.
Log in