Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 63, Issue 2


Endocrine regulation of the reproduction in crustaceans: Identification of potential targets for toxicants and environmental contaminants

Edita Mazurová
  • Research Centre for Environmental Chemistry and Ecotoxicology (RECETOX), Masaryk University, Kamenice 3, CZ-62500, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klára Hilscherová
  • Research Centre for Environmental Chemistry and Ecotoxicology (RECETOX), Masaryk University, Kamenice 3, CZ-62500, Brno, Czech Republic
  • Institute of Botany, Academy of Sciences of the Czech Republic, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rita Triebskorn
  • Animal Physiological Ecology Department, Eberhard-Karls University, Tübingen, Germany
  • Steinbeis-Transferzentrum für Ökotoxikologie und Ökophysiologie, Rottenburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heinz-R. Köhler / Blahoslav Maršálek
  • Research Centre for Environmental Chemistry and Ecotoxicology (RECETOX), Masaryk University, Kamenice 3, CZ-62500, Brno, Czech Republic
  • Institute of Botany, Academy of Sciences of the Czech Republic, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luděk Bláha
  • Research Centre for Environmental Chemistry and Ecotoxicology (RECETOX), Masaryk University, Kamenice 3, CZ-62500, Brno, Czech Republic
  • Institute of Botany, Academy of Sciences of the Czech Republic, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-03-27 | DOI: https://doi.org/10.2478/s11756-008-0027-x


Progress in ecotoxicological research documents that crustaceans are highly vulnerable to diverse chemicals and toxicants in the environment. In particular, pollutants affecting endocrine homeostasis in crustaceans (i.e., endocrine disruptors) are intensively studied, and serious reproductive disorders have been documented. In this review, current knowledge about the endocrine regulation of the crustacean reproduction is put together with the published ecotoxicological data with an attempt to summarize the potential of xenobiotics to affect crustacean reproduction. Following gaps and trends were identified: (1) Studies are required in the field of neurohormone (serotonin and dopamine) regulation of the reproduction and possible modulations by environmental toxicants such as antidepressant drugs. (2) Molting-related parameters (regulated by ecdysteroid hormones) are closely coordinated with the development and reproduction cycles in crustaceans (cross-links with methyl farnesoate signalling), and their susceptibility to toxicants should be studied. (3) Other biochemical targets for xenobiotics were recently discovered in crustaceans and these should be explored by further ecotoxicological studies (e.g., new information about ecdysteroid receptor molecular biology). (4) Some sex steroid hormones known from vertebrates (testosterone, progesterone) have been reported in crustaceans but knowledge about their targets (crustacean steroid receptors) and signalling is still limited. (5) Determination of the sex in developing juveniles (affecting the sex ratio in population) is a sensitive parameter to various xenobiotics (including endocrine disruptors) but its modulation by general environmental stress and non-specific toxicity should be further studied.

Keywords: crustaceans; reproduction; endocrine disruption; sex determination; contaminant; ecotoxicology

  • [1] Abdu U., Davis C., Khalaila I. & Sagi A. 2002. The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. Gen. Comp. Endocrinol. 127: 263–272. http://dx.doi.org/10.1016/S0016-6480(02)00053-9CrossrefGoogle Scholar

  • [2] Abdu U., Takac P., Laufer H. & Sagi A. 1998. Effect of methyl farnesoate on late larval development and metamorphosis in the prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae): A juvenoid-like effect? Biol. Bull. 195: 112–119. http://dx.doi.org/10.2307/1542818CrossrefGoogle Scholar

  • [3] Allner B., Wegener G., Knacker T. & Stahlschmidt-Allner P. 1999. Electrophoretic determination of estrogen-induced protein in fish exposed to synthetic and naturally occurring chemicals. Sci. Total Environ. 233: 21–31. http://dx.doi.org/10.1016/S0048-9697(99)00176-XCrossrefGoogle Scholar

  • [4] Andersen H.R., Halling-Sorensen B. & Kusk K.O. 1999. A parameter for detecting estrogenic exposure in the copepod Acartia tonsa. Ecotoxicol. Environ. Saf. 44: 56–61. http://dx.doi.org/10.1006/eesa.1999.1800CrossrefGoogle Scholar

  • [5] Andersen H.R., Wollenberger L., Halling-Sorensen B. & Kusk K.O. 2001. Development of copepod nauplii to copepodites — A parameter for chronic toxicity including endocrine disruption. Environ. Toxicol. Chem. 20: 2821–2829. http://dx.doi.org/10.1897/1551-5028(2001)020<2821:DOCNTC>2.0.CO;2CrossrefGoogle Scholar

  • [6] Baldwin W.S., Milam D.L. & LeBlanc G.A. 1995. Physiological and biochemical perturbations in Daphnia magna following exposure to the model environmental estrogen diethylstilbestrol. Environ. Toxicol. Chem. 14: 945–952. http://dx.doi.org/10.1897/1552-8618(1995)14[945:PABPID]2.0.CO;2CrossrefGoogle Scholar

  • [7] Billinghurst Z., Clare A.S. & Depledge M.H. 2001. Effects of 4-n-nonylphenol and 17 beta-oestradiol on early development of the barnacle Elminius modestus. J. Exp. Mar. Biol. Ecol. 257: 255–268. http://dx.doi.org/10.1016/S0022-0981(00)00338-5CrossrefGoogle Scholar

  • [8] Billinghurst Z., Clare A.S., Matsumura K. & Depledge M.H. 2000. Induction of cypris major protein in barnacle larvae by exposure to 4-n-nonylphenol and 17 beta-oestradiol. Aquat. Toxicol. 47: 203–212. http://dx.doi.org/10.1016/S0166-445X(99)00018-1CrossrefGoogle Scholar

  • [9] Breitholtz M. & Bengtsson B.E. 2001. Oestrogens have no hormonal effect on the development and reproduction of the harpacticoid copepod Nitocra spinipes. Mar. Pollut. Bull. 42: 879–886. http://dx.doi.org/10.1016/S0025-326X(01)00046-7CrossrefGoogle Scholar

  • [10] Brian J.V. 2005. Inter-population variability in the reproductive morphology of the shore crab (Carcinus maenas): evidence of endocrine disruption in a marine crustacean? Mar. Pollut. Bull. 50: 410–416. http://dx.doi.org/10.1016/j.marpolbul.2004.11.023CrossrefGoogle Scholar

  • [11] Brooks B.W., Turner P.K., Stanley J.K., Weston J.J., Glidewell E.A., Foran C.M., Slattery M., La Point T.W. & Huggett D.B. 2003. Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52: 135–142. http://dx.doi.org/10.1016/S0045-6535(03)00103-6CrossrefGoogle Scholar

  • [12] Brown R.J., Conradi M. & Depledge M.H. 1999. Long-term exposure to 4-nonylphenol affects sexual differentiation and growth of the amphipod Corophium volutator (Pallas, 1766). Sci. Total Environ. 233: 77–88. http://dx.doi.org/10.1016/S0048-9697(99)00181-3CrossrefGoogle Scholar

  • [13] Brown R.J., Rundle S.D., Hutchinson T.H., Williams T.D. & Jones M.B. 2003. A copepod life-cycle test and growth model for interpreting the effects of lindane. Aquat. Toxicol. 63: 1–11. http://dx.doi.org/10.1016/S0166-445X(02)00120-0CrossrefGoogle Scholar

  • [14] Chang E.S. 1993. Comparative endocrinology of molting and reproduction: insects and crustaceans. Annu. Rev. Entomol. 38: 161–80. http://dx.doi.org/10.1146/annurev.en.38.010193.001113CrossrefGoogle Scholar

  • [15] Charniaux-Cotton H. 1960. Sex determination, pp. 411–447. In: Waterman T.H. (ed.), The Physiology of Crustacea, Academic Press, New York. Google Scholar

  • [16] Charniaux-Cotton H. & Payen G. 1988. Crustacean reproduction, pp. 279–303. In: Laufer H. & Downer R.G.H. (eds), Endocrinology of Selected Invertebrate Types, Alan R. Liss, New York, USA. Google Scholar

  • [17] Chaves A.R. 2000. Effect of X-organ sinus gland extract on S35 methionine incorporation to the ovary of the red swamp crawfish Procambarus clarkii. Comp. Biochem. Physiol. A 126: 407–413. http://dx.doi.org/10.1016/S1095-6433(00)00225-7CrossrefGoogle Scholar

  • [18] Chung J.S. & Webster S.G. 2003. Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas — From target to transcript. Eur. J. Biochem. 270: 3280–3288. http://dx.doi.org/10.1046/j.1432-1033.2003.03720.xCrossrefGoogle Scholar

  • [19] Colbourne J.K., Singan V.R. & Gilbert D.G. 2005. WFleaBase: the Daphnia genome database. BMC Bioinformatics 6: 45–49. http://dx.doi.org/10.1186/1471-2105-6-45CrossrefGoogle Scholar

  • [20] Cooke I.M. & Sullivan R.E. 1982. Hormones and neurosecretion, pp. 205–287. In: Atwood H.L. & Sanderman D.C. (eds), The Biology of Crustacea — Neurobiology: Structure and Function, Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paolo, Sydney, Tokyo, Toronto. Google Scholar

  • [21] Cripe G.M., McKenney C.L., Hoglund M.D. & Harris P.S. 2003. Effects of fenoxycarb exposure on complete larval development of the xanthid crab, Rhithropanopeus harrisii. Environ. Pollut. 125: 295–299. http://dx.doi.org/10.1016/S0269-7491(02)00414-1CrossrefGoogle Scholar

  • [22] Dinan L., Bourne P., Whiting P., Dhadialla T.S. & Hutchinson T.H. 2001. Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the Drosophila melanogaster BII cel in vitro assay. Environ. Toxicol. Chem. 20: 2038–2046. http://dx.doi.org/10.1897/1551-5028(2001)020<2038:SOECFE>2.0.CO;2CrossrefGoogle Scholar

  • [23] Dubrovsky E.B., Dubrovskaya V.A. & Berger E.M. 2004. Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Dev. Biol. 268: 258–270. http://dx.doi.org/10.1016/j.ydbio.2004.01.009CrossrefGoogle Scholar

  • [24] Dunn A.M., Hogg J.C., Kelly A. & Hatcher M.J. 2005. Two cues for sex determination in Gammarus duebeni: Adaptive variation in environmental sex determination? Limnol. Oceanogr. 50: 346–353. http://dx.doi.org/10.4319/lo.2005.50.1.0346CrossrefGoogle Scholar

  • [25] Durica D.S., Wu X., Anilkumar G., Hopkins P.M. & Chung A.C.K. 2002. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Mol. Cell. Endocrinol. 189: 59–76. http://dx.doi.org/10.1016/S0303-7207(01)00740-7CrossrefGoogle Scholar

  • [26] Eads B.D., Andrews J. & Colbourne J.K. 2007. Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity. doi: 10.1038/sj.hdy.6800999. CrossrefGoogle Scholar

  • [27] Fingerman M. 1997. Roles of neurotransmitters in regulating reproductive hormone release and gonadal maturation inh decapod crustaceans. Invertebr. Reprod. Dev. 31: 47–54. CrossrefGoogle Scholar

  • [28] Flaherty C.M. & Dodson S.I. 2005. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61: 200–207. http://dx.doi.org/10.1016/j.chemosphere.2005.02.016CrossrefGoogle Scholar

  • [29] Ford A.T., Read P.A., Jones T.L., Michino F., Pang Y. & Fernandes T.F. 2007. An investigation into intersex amphipods and possible association with aquaculture. Mar. Environ. Res. 64: 443–455. http://dx.doi.org/10.1016/j.marenvres.2007.03.006CrossrefGoogle Scholar

  • [30] Ford A.T., Rodgers-Gray T.P., Davies I.M., Dunn A.M., Read P.A., Robinson C.D., Smith J.E. & Fernandes T.F. 2005. Abnormal gonadal morphology in intersex, Echinogammarus marinus (Amphipoda): a possible cause of reduced fecundity? Mar. Biol. 147: 913–918. http://dx.doi.org/10.1007/s00227-005-1601-1CrossrefGoogle Scholar

  • [31] Gagne F. & Blaise C. 2000. Organic alkali-labile phosphates in biological materials: A generic assay to detect vitellogenin in biological tissues. Environ. Toxicol. 15: 243–247. http://dx.doi.org/10.1002/1522-7278(2000)15:3<243::AID-TOX9>3.0.CO;2-DCrossrefGoogle Scholar

  • [32] Ghekiere A., Fenske M., Verslycke T., Tyler C. & Janssen C.R. 2005. Development of quantitative enzyme-linked immunosorbent assay for vitellin in the mysid Neomysis integer (Crustacea: Mysidacea). Comp. Biochem. Physiol. A 142: 43–49. http://dx.doi.org/10.1016/j.cbpa.2005.07.006CrossrefGoogle Scholar

  • [33] Ginsburger-Vogel T. 1989. Determinism of paternally inherited sex ratio anomalies in the amphipod crustacean Orchestia gammarellus Pallas. Invertebr. Reprod. Dev. 16: 183–194. CrossrefGoogle Scholar

  • [34] Ginsburger-Vogel T. 1991. Intersexuality in Orchestia mediterranea Costa, 1853, and Orchestia aestuarensis Wildish, 1987 (Amphipoda): A consequence of hybridization or parasitic infestation? J. Crustac. Biol. 11: 530–539. http://dx.doi.org/10.2307/1548522CrossrefGoogle Scholar

  • [35] Ginsburger-Vogel T. & Charniaux-Cotton H. 1982. Sex determination, pp. 257–281. In: Abele L.G. (ed.), The Biology of Crustacea — Embryology, Morphology and Genetics, Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Sydney, Tokyo, Toronto. Google Scholar

  • [36] Hasegawa Y., Hirose E. & Katakura Y. 1993. Hormonal control of sexual differentiation and reproduction in crustacea. Am. Zool. 33: 403–411. Google Scholar

  • [37] Hedgecock D., Tracey M.L. & Nelson K. 1982. Genetics, pp. 283–290. In: Abele L.G. (ed.), The Biology of Crustacea — Embryology, Morphology and Genetics, Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Syndey, Tokyo, Toronto. Google Scholar

  • [38] Henry T.B., Kwon J.-W., Armbrust K.L. & Black M.C. 2004. Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia. Environ. Toxicol. Chem. 23: 2229–2233. http://dx.doi.org/10.1897/03-278CrossrefGoogle Scholar

  • [39] Huang D.-J., Wang S.-Y. & Chen H.-C. 2004. Effects of the endocrine disrupter chemicals chlordane and lindane on the male green neon shrimp (Neocaridina denticulata). Chemosphere 57: 1621–1627. http://dx.doi.org/10.1016/j.chemosphere.2004.08.063CrossrefGoogle Scholar

  • [40] Hutchinson T.H. 2002. Reproductive and developmental effects of endocrine disrupters in invertebrates: in vitro and in vivo approaches. Toxicol. Lett. 131: 75–81. http://dx.doi.org/10.1016/S0378-4274(02)00046-2CrossrefGoogle Scholar

  • [41] Hutchinson T.H., Pounds N.A., Hampel M. & Williams T.D. 1999a. Impact of natural and synthetic steroids on the survival, development and reproduction of marine copepods (Tisbe battagliai). Sci. Total Environ. 233: 167–179. http://dx.doi.org/10.1016/S0048-9697(99)00223-5CrossrefGoogle Scholar

  • [42] Hutchinson T.H., Pounds N.A., Hampel M. & Williams T.D. 1999b. Life-cycle studies with marine copepods (Tisbe battagliai) exposed to 20-hydroxyecdysone and diethylstilbestrol. Environ. Toxicol. Chem. 18: 2914–2920. http://dx.doi.org/10.1897/1551-5028(1999)018<2914:LCSWMC>2.3.CO;2CrossrefGoogle Scholar

  • [43] Innes D.J. 1997. Sexual reproduction of Daphnia pulex in a temporary habitat. Oecologia 111: 53–60. http://dx.doi.org/10.1007/s004420050207CrossrefGoogle Scholar

  • [44] James M.O. & Boyle S.M. 1998. Cytochromes P450 in crustacea. Comp. Biochem. Physiol. C 121: 157–172. Google Scholar

  • [45] Janer G., LeBlanc G.A. & Porte C. 2005. A comparative study on androgen metabolism in three invertebrate species. Gen. Comp. Endocrinol. 143: 211–221. http://dx.doi.org/10.1016/j.ygcen.2005.03.016CrossrefGoogle Scholar

  • [46] Jungmann D., Ladewig V., Ludwichowski K.U., Petzsch P. & Nagel R. 2004. Intersexuality in Gammarus fossarum Koch — A common inducible phenomenon? Arch. Hydrobiol. 159: 511–529. http://dx.doi.org/10.1127/0003-9136/2004/0159-0511CrossrefGoogle Scholar

  • [47] Katakura Y. 1989. Endocrine and genetic control of sex differentiation in the malacostracan crustacea. Invertebr. Reprod. Dev. 16: 177–182. CrossrefGoogle Scholar

  • [48] Katakura Y. & Hasegawa Y. 1983. Masculinization of females of the isopod crustacean, Armadillidium vulgare, following injections of an active extract of the androgenic gland. Gen. Comp. Endocrinol. 49: 57–62. http://dx.doi.org/10.1016/0016-6480(83)90007-2CrossrefGoogle Scholar

  • [49] Kim H.W., Chang E.S. & Mykles D.L. 2005a. Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. J. Exp. Biol. 208: 3177–3197. http://dx.doi.org/10.1242/jeb.01754CrossrefGoogle Scholar

  • [50] Kim H.W., Lee S.G. & Mykles D.L. 2005b. Ecdysteroid-responsive genes, RXR and E75, in the tropical land crab, Gecarcinus lateralis: Differential tissue expression of multiple RXR isoforms generated at three alternative splicing sites in the hinge and ligand-binding domains. Mol. Cell. Endocrinol. 242: 80–95. http://dx.doi.org/10.1016/j.mce.2005.08.001CrossrefGoogle Scholar

  • [51] Köhler H.R., Kloas W., Schirling M., Lutz I., Reye A.L., Langen J.S., Triebskorn R., Nagel R. & Schonfelder G. 2007. Sex steroid receptor evolution and signalling in aquatic invertebrates. Ecotoxicology 16: 131–143. http://dx.doi.org/10.1007/s10646-006-0111-3CrossrefGoogle Scholar

  • [52] Kummerer K. 2004. Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks. 2nd ed., Springer Verlag, Heidelberg, Germany, 527 pp. Google Scholar

  • [53] Kusk K.O. & Wollenberger L. 2007. Towards an internationally harmonized test method for reproductive and developmental effects of endocrine disrupters in marine copepods. Ecotoxicology 16: 183–195. http://dx.doi.org/10.1007/s10646-006-0112-2CrossrefGoogle Scholar

  • [54] Laufer H., Biggers W.J. & Ahl J.S.B. 1998. Stimulation of ovarian maturation in the crayfish Procambarus clarkii by methyl farnesoate. Gen. Comp. Endocrinol. 111: 113–118. http://dx.doi.org/10.1006/gcen.1998.7109CrossrefGoogle Scholar

  • [55] LeBlanc G.A. 2007. Crustacean endocrine toxicology: a review. Ecotoxicology 16: 61–81. http://dx.doi.org/10.1007/s10646-006-0115-zCrossrefGoogle Scholar

  • [56] Lee F.-Y., Shih T.-W. & Chang C.-F. 1997. Isolation and characterization of the female-specific protein (vitellogenin) in mature female hemolymph of the freshwater prawn Macro-brachium rosenbergii: Comparison with ovarian vitellin. Gen. Comp. Endocrinol. 108: 406–415. http://dx.doi.org/10.1006/gcen.1997.6989CrossrefGoogle Scholar

  • [57] Lecher P., Defaye D. & Noel P. 1995. Chromosomes and nuclear DNA of crustacea. Invertebr. Reprod. Dev. 27: 85–114. CrossrefGoogle Scholar

  • [58] Martins J., Riberio K., Rangel-Figueiredo T. & Coimbra J. 2007. Reproductive cycle, ovarian development, and vertebrate-type steroids profile in the freshwater prawn Macrobrachium rosenbergii. J. Crustac. Biol. 27: 220–228. http://dx.doi.org/10.1651/C-2597.1CrossrefGoogle Scholar

  • [59] McCabe J. & Dunn A.M. 1997. Adaptive significance of environmental sex determination in an amphipod. J. Evol. Biol. 10: 515–527. http://dx.doi.org/10.1007/s000360050039CrossrefGoogle Scholar

  • [60] McKenney C.L. 2005. The influence of insect juvenile hormone agonists on metamorphosis and reproduction in estuarine crustaceans. Integr. Comp. Biol. 45: 97–105. http://dx.doi.org/10.1093/icb/45.1.97CrossrefGoogle Scholar

  • [61] McKenney C.L., Cripe G.M., Foss S.S., Tuberty S.R. & Hoglund M. 2004. Comparative embryonic and larval developmental responses of estuarine shrimp (Palaemonetes pugio) to the juvenile hormone agonist fenoxycarb. Arch. Environ. Contam. Toxicol. 47: 463–470. http://dx.doi.org/10.1007/s00244-002-0294-4CrossrefGoogle Scholar

  • [62] Medesani D.A., Greco L.S.L. & Rodriguez E.M. 2004. Interference of cadmium and copper with the endocrine control of ovarian growth in the estuarine crab Chasmagnathus granulata. Aquat. Toxicol. 69: 165–174. http://dx.doi.org/10.1016/j.aquatox.2004.05.003CrossrefGoogle Scholar

  • [63] Mu X. & LeBlanc G.A. 2002. Developmental toxicity of testosterone in the crustacean Daphnia magna involves anti-ecdysteroidal activity. Gen. Comp. Endocrinol. 129: 127–133. http://dx.doi.org/10.1016/S0016-6480(02)00518-XCrossrefGoogle Scholar

  • [64] Mu X. & Leblanc G.A. 2004. Cross communication between signaling pathways: Juvenoid hormones modulate ecdysteroid activity in a crustacean. J. Exp. Zool. A — Comp. Exp. Biol. 301A: 793–801. http://dx.doi.org/10.1002/jez.a.104CrossrefGoogle Scholar

  • [65] Nates S.F. & McKenney C.L. 2000. Growth, lipid class and fatty acid composition in juvenile mud crabs (Rhithropanopeus harrisii) following larval exposure to Fenoxycarb (R), insect juvenile hormone analog. Comp. Biochem. Physiol. C 127: 317–325. Google Scholar

  • [66] Oberdörster E., Rice C.D. & Irwin L.K. 2000. Purification of vitellin from grass shrimp Palaemonetes pugio, generation of monoclonal antibodies, and validation for the detection of lipovitellin in Crustacea. Comp. Biochem. Physiol. C 127: 199–207. Google Scholar

  • [67] Ohira T., Nishimura T., Sonobe H., Okuno A., Watanabe T., Nagasawa H., Kawazoe I. & Aida K. 1999. Expression of a recombinant molt-inhibiting hormone of the kuruma prawn Penaeus japonicus in Escherichia coli. Biosci. Biotechnol. Biochem. 63: 1576–1581. http://dx.doi.org/10.1271/bbb.63.1576CrossrefGoogle Scholar

  • [68] Okumura T. & Aida K. 2001. Effects of bilateral eyestalk ablation on molting and ovarian development in the giant freshwater prawn, Macrobrachium rosenbergii. Fish. Sci. 67: 1125–1135. http://dx.doi.org/10.1046/j.1444-2906.2001.00370.xCrossrefGoogle Scholar

  • [69] Okumura T. & Hara M. 2004. Androgenic gland cell structure and spermatogenesis during the molt cycle and correlation to morphotypic differentiation in the giant freshwater prawn, Macrobrachium rosenbergii. Zool. Sci. 21: 621–628. http://dx.doi.org/10.2108/zsj.21.621CrossrefGoogle Scholar

  • [70] Okumura T. & Sakiyama K. 2004. Hemolymph levels of vertebrate-type steroid hormones in female kuruma prawn Marsupenaeus japonicus (Crustacea: Decapoda: Penaeidae) during natural reproductive cycle and induced ovarian development by eyestalk ablation. Fish. Sci. 70: 372–380. http://dx.doi.org/10.1111/j.1444-2906.2004.00816.xCrossrefGoogle Scholar

  • [71] Okuno A., Hasegawa Y., Ohira T. & Nagasawa H. 2001. Immuno-logical identification of crustacean androgenic gland hormone, a glycopeptide. Peptides 22: 175–181. http://dx.doi.org/10.1016/S0196-9781(00)00374-0CrossrefGoogle Scholar

  • [72] Olmstead A.W. & LeBlanc G.A. 2002. Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. J. Exp. Zool. 293: 736–739. http://dx.doi.org/10.1002/jez.10162CrossrefGoogle Scholar

  • [73] Olmstead A.W. & LeBlanc G.A. 2007. The environmental-endocrine basis of gynandromorphism (intersex) in a crustacean. Int. J. Biol. Sci. 3: 77–84. CrossrefGoogle Scholar

  • [74] Peterson J.K., Kashian D.R. & Dodson S.I. 2001. Methoprene and 20-OH-ecdysone affect male production in Daphnia pulex. Environ. Toxicol. Chem. 20: 582–588. http://dx.doi.org/10.1897/1551-5028(2001)020<0582:MAOEAM>2.0.CO;2CrossrefGoogle Scholar

  • [75] Rodriguez E.M., Greco L.S.L., Medesani D.A., Laufer H. & Fingerman M. 2002a. Effect of methyl farnesoate, alone and in combination with other hormones, on ovarian growth of the red swamp crayfish, Procambarus clarkii, during vitellogenesis. Gen. Comp. Endocrinol. 125: 34–40. http://dx.doi.org/10.1006/gcen.2001.7724CrossrefGoogle Scholar

  • [76] Rodriguez E.M., Medesani D.A. & Fingerman M. 2007. Endocrine disruption in crustaceans due to pollutants: A review. Comp. Biochem. Physiol. A 146: 661–671. http://dx.doi.org/10.1016/j.cbpa.2006.04.030CrossrefGoogle Scholar

  • [77] Rodriguez E.M., Medesani D.A., Greco L.S.L. & Fingerman M. 2002b. Effects of some steroids and other compounds on ovarian growth of the red swamp crayfish, Procambarus clarkii, during early vitellogenesis. J. Exp. Zool. 292: 82–87. http://dx.doi.org/10.1002/jez.1144CrossrefGoogle Scholar

  • [78] Sagi A., Manor R., Segall C., Davis C. & Khalaila I. 2002. On intersexuality in the crayfish Cherax quadricarinatus: an inducible sexual plasticity model. Invertebr. Reprod. Dev. 41: 27–33. CrossrefGoogle Scholar

  • [79] Sagi A., Shoukrun R., Khalaila I. & Rise M. 1996. Gonad maturation, morphological and physiological changes during the first reproductive cycle of the crayfish Cherax quadricarinatus female. Invertebr. Reprod. Dev. 29: 235–242. CrossrefGoogle Scholar

  • [80] Sanders M.B., Billinghurst Z., Depledge M.H. & Clare A.S. 2005. Larval development and vitellin-like protein expression in Palaemon elegans larvae following xeno-oestrogen exposure. Integr. Comp. Biol. 45: 51–60. http://dx.doi.org/10.1093/icb/45.1.51CrossrefGoogle Scholar

  • [81] Sarojini R., Nagabhushanam R., Devi M. & Fingerman M. 1995a. Dopaminergic inhibition of 5-hydroxytryptamine-stimulated testicular maturation in the fiddler crab, Uca pugilator. Comp. Biochem. Physiol. C 111: 287–292. Google Scholar

  • [82] Sarojini R., Nagabhushanam R. & Fingerman M. 1995b. In vivo effects of dopamine and dopaminergic antagonists on testicular maturation in the red swamp crayfish, Procambarus clarkii. Biol. Bull. 189: 340–346. http://dx.doi.org/10.2307/1542151CrossrefGoogle Scholar

  • [83] Sarojini R., Nagabhushanam R. & Fingerman M. 1997. An in vitro study of the inhibitory action of methionine enkephalin on ovarian maturation in the red swamp crayfish, Procambarus clarkii. Comp. Biochem. Physiol. C 117: 207–210. Google Scholar

  • [84] Siwicki K.K., Beltz B.S. & Kravitz E.A. 1987. Proctolin in identified serotonergic, dopaminergic, and cholinergic neurons in the lobster, Homarus americanus. J. Neurosci. 7: 522–532. Google Scholar

  • [85] Schirling M., Jungmann D., Ladewig V., Ludwichowski K.-U., Nagel R., Köhler H.-R. & Triebskorn R. 2006. Bisphenol A in artificial indoor streams: II. Stress response and gonad histology in Gammarus fossarum (Amphipoda). Ecotoxicology 15: 143–156. http://dx.doi.org/10.1007/s10646-005-0044-2CrossrefGoogle Scholar

  • [86] Soroka Y., Sagi A., Khalaila I., Abdu U. & Milner Y. 2000. Changes in protein kinase C during vitellogenesis in the crayfish Cherax quadricarinatus — Possible activation by methyl farnesoate. Gen. Comp. Endocrinol. 118: 200–208. http://dx.doi.org/10.1006/gcen.2000.7471CrossrefGoogle Scholar

  • [87] Spaziani E., Mattson M.P., Wang W.N.L. & McDougall H.E. 1999. Signaling pathways for ecdysteroid hormone synthesis in crustacean Y-organs. Am. Zool. 39: 496–512. Google Scholar

  • [88] Stanton M.G. 1968. Colorimetric determination of inorganic phosphate in the presence of biological material and adenosine triphosphate. Anal. Biochem. 22: 27–34. http://dx.doi.org/10.1016/0003-2697(68)90255-8CrossrefGoogle Scholar

  • [89] Suzuki S. 1999. Androgenic gland hormone is a sex-reversing factor but cannot be a sex-determining factor in the female crustacean isopods Armadillidium vulgare. Gen. Comp. Endocrinol. 115: 370–378. http://dx.doi.org/10.1006/gcen.1999.7324CrossrefGoogle Scholar

  • [90] Tangvuthipong P. & Damrongphol P. 2006. 5-Hydroxytryptamine enhances larval development of the giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture 251: 567–572. http://dx.doi.org/10.1016/j.aquaculture.2005.06.010CrossrefGoogle Scholar

  • [91] Tatarazako N. & Oda S. 2007. The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine dirupting effects on crustaceans. Ecotoxicology 16: 197–203. http://dx.doi.org/10.1007/s10646-006-0120-2CrossrefGoogle Scholar

  • [92] Thornton J.W. 2004. Resurrecting ancient genes: experimental analysis of extinct molecules. Nature Rev. Genet. 5: 366–375. http://dx.doi.org/10.1038/nrg1324CrossrefGoogle Scholar

  • [93] Thornton J.W., Need E. & Crews D. 2003. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Sci. Total Environ. 301: 1714–1717. Google Scholar

  • [94] Tuberty S.R. & McKenney C.L. 2005. Ecdysteroid responses of estuarine crustaceans exposed through complete larval development to juvenile hormone agonist insecticides. Integr. Comp. Biol. 45: 106–117. http://dx.doi.org/10.1093/icb/45.1.106CrossrefGoogle Scholar

  • [95] Vaca A.A. & Alfaro J. 2000. Ovarian maturation and spawning in the white shrimp, Penaeus vannamei, by serotonin injection. Aquaculture 182: 373–385. http://dx.doi.org/10.1016/S0044-8486(99)00267-7CrossrefGoogle Scholar

  • [96] Verslycke T., De Wasch K., De Brabander H.F. & Janssen C.R. 2002. Testosterone metabolism in the estuarine mysid Neomysis integer (Crustacea; Mysidacea): Identification of testosterone metabolites and endogenous vertebrate-type steroids. Gen. Comp. Endocrinol. 126: 190–199. http://dx.doi.org/10.1006/gcen.2002.7793CrossrefGoogle Scholar

  • [97] Verslycke T., Ghekiere A., Raimondo S. & Janssen C. 2007. Mysid crustaceans as test models for the screening and testing of endocrine-disrupting chemicals. Ecotoxicology 16: 205–219. http://dx.doi.org/10.1007/s10646-006-0122-0CrossrefGoogle Scholar

  • [98] Verslycke T., Poelmans S., De Wasch K., De Brabander H.F. & Janssen C.R. 2004. Testosterone and energy metabolism in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following exposure to endocrine disruptors. Environ. Toxicol. Chem. 23: 1289–1296. http://dx.doi.org/10.1897/03-338CrossrefGoogle Scholar

  • [99] Vethaak A.D., Rijs G.B.J., Schrap S.M., Ruiter H., Gerritsen A. & Lahr J. 2002. Estrogens and Xeno-Estrogens in the Aquatic Environment of the Netherlands. Occurrence, Potency and Biological Effects. Dutch National Institute of Inland Water Management and Waste Water Treatment (RIZA) & Dutch National Institute for Coastal and Marine Management (RIKZ), Lelystad, Den Haag, 293 pp. Google Scholar

  • [100] Volz D.C. & Chandler G.T. 2004. An enzyme-linked immunosorbent assay for lipovitellin quantification in copepods: A screening tool for endocrine toxicity. Environ. Toxicol. Chem. 23: 298–305. http://dx.doi.org/10.1897/03-200CrossrefGoogle Scholar

  • [101] Volz D.C., Kawaguchi T. & Chandler G.T. 2002. Purification and characterization of the common yolk protein, vitellin, from the estuarine amphipod Leptocheirus plumulosus. Prep. Biochem. Biotechnol. 32: 103–116. http://dx.doi.org/10.1081/PB-120004123CrossrefGoogle Scholar

  • [102] Watt P.J. 1994. Parental control of sex ratio in Gammarus duebeni an organism with environmental sex determination. J. Evol. Biol. 7: 177–187. http://dx.doi.org/10.1046/j.1420-9101.1994.7020177.xCrossrefGoogle Scholar

  • [103] Watts M.M., Pascoe D. & Carroll K. 2002. Population responses of the freshwater amphipod Gammarus pulex (L.) to an environmental estrogen, 17 alpha-ethinylestradiol. Environ. Toxicol. Chem. 21: 445–450. http://dx.doi.org/10.1897/1551-5028(2002)021<0445:PROTFA>2.0.CO;2CrossrefGoogle Scholar

  • [104] Withers P.C. 1992. Comparative Animal Physiology. Harcourt Brace Jovanovich College Publishers, Saunders College Publishing, Fort Worth, Philadelphia, San Diego, New York, Orlando, Austin, San Antonio, Toronto, Montreal, London, Sydney, Tokyo, 949 pp. Google Scholar

  • [105] Wu X., Hopkins P.M., Palli S.R. & Durica D.S. 2004. Crustacean retinoid-X receptor isoforms: distinctive DNA binding and receptor-receptor interaction with a cognate ecdysteroid receptor. Mol. Cell. Endocrinol. 218: 21–38. http://dx.doi.org/10.1016/j.mce.2003.12.013CrossrefGoogle Scholar

  • [106] Yokota Y., Unuma T., Moriyama A. & Yamano K. 2003. Cleavage site of a major yolk protein (MYP) determined by cDNA isolation and amino acid sequencing in sea urchin, Hemicen-trotus pulcherrimus. Comp. Biochem. Physiol. B 135: 71–81. http://dx.doi.org/10.1016/S1096-4959(03)00084-8CrossrefGoogle Scholar

  • [107] Zou E. 2005. Impacts of xenobiotics on crustacean molting: The invisible endocrine diruption. Integr. Comp. Biol. 45: 33–38. http://dx.doi.org/10.1093/icb/45.1.33CrossrefGoogle Scholar

  • [108] Zou E. & Fingerman M. 1997. Synthetic estrogenic agents do not interfere with sex differentiation but do inhibit molting of the cladoceran Daphnia magna. Bull. Environ. Contam. Toxicol. 58: 596–602. http://dx.doi.org/10.1007/s001289900376CrossrefGoogle Scholar

  • [109] Zou E. & Fingerman M. 1999. Effects of estrogenic agents on chitiobiase activity in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Ecotoxicol. Environ. Saf. 42: 185–190. http://dx.doi.org/10.1006/eesa.1998.1740CrossrefGoogle Scholar

About the article

Published Online: 2008-03-27

Published in Print: 2008-04-01

Citation Information: Biologia, Volume 63, Issue 2, Pages 139–150, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0027-x.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Chunyun Liu, Xiwei Jia, Zhihua Zou, Xiaowei Wang, Yilei Wang, and Ziping Zhang
General and Comparative Endocrinology, 2017
Anja Henneberg, Katrin Bender, Ludek Blaha, Sabrina Giebner, Bertram Kuch, Heinz-R. Köhler, Diana Maier, Jörg Oehlmann, Doreen Richter, Marco Scheurer, Ulrike Schulte-Oehlmann, Agnes Sieratowicz, Simone Ziebart, Rita Triebskorn, and John A. Craft
PLoS ONE, 2014, Volume 9, Number 6, Page e98307
R.P. Masteling, B.B. Castro, S.C. Antunes, and B. Nunes
Ecotoxicology and Environmental Safety, 2016, Volume 134, Page 64
Anne Lafontaine, Marc Hanikenne, Céline Boulangé-Lecomte, Joëlle Forget-Leray, Jean-Pierre Thomé, and Eric Gismondi
Environmental Science and Pollution Research, 2016, Volume 23, Number 20, Page 20661
Donald L. Mykles and Jerome H. L. Hui
Integrative and Comparative Biology, 2015, Volume 55, Number 5, Page 891
E. S. Zadereev and T. S. Lopatina
Doklady Biochemistry and Biophysics, 2015, Volume 461, Number 1, Page 127
Hui Qiao, Yiwei Xiong, Wenyi Zhang, Hongtuo Fu, Sufei Jiang, Shengming Sun, Hongkun Bai, Shubo Jin, and Yongsheng Gong
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, Volume 185, Page 1
Xugan Wu, Hao Chen, Zhijun Liu, and Yongxu Cheng
Journal of Shellfish Research, 2014, Volume 33, Number 1, Page 35
P.K. Mensah, W.J. Muller, and C.G. Palmer
Physics and Chemistry of the Earth, Parts A/B/C, 2012, Volume 50-52, Page 262
B. Campos, B. Piña, M. Fernández-Sanjuán, S. Lacorte, and C. Barata
Aquatic Toxicology, 2012, Volume 109, Page 100
David A. Lieb, Raymond W. Bouchard, Robert F. Carline, Ted R. Nuttall, John R. Wallace, and Carrie L. Burkholder
Fisheries, 2011, Volume 36, Number 10, Page 489
Donald L. Mykles
The Journal of Steroid Biochemistry and Molecular Biology, 2011, Volume 127, Number 3-5, Page 196
Walaiporn Makkapan, Lamai Maikaeo, Teruo Miyazaki, and Wilaiwan Chotigeat
Aquaculture, 2011, Volume 321, Number 1-2, Page 101
Benoît Xuereb, Laurent Bezin, Arnaud Chaumot, Hélène Budzinski, Sylvie Augagneur, Renaud Tutundjian, Jeanne Garric, and Olivier Geffard
Ecotoxicology, 2011, Volume 20, Number 6, Page 1286
Ronnarong Palasoon, Sasiporn Panasophonkul, Prapee Sretarugsa, Peter Hanna, Prasert Sobhon, and Jittipan Chavadej
Invertebrate Neuroscience, 2011, Volume 11, Number 1, Page 29
Kevin Cailleaud, Hélène Budzinski, Sophie Lardy, Sylvie Augagneur, Sabria Barka, Sami Souissi, and Joëlle Forget-Leray
Environmental Science and Pollution Research, 2011, Volume 18, Number 2, Page 226
Olivier Geffard, Benoit Xuereb, Arnaud Chaumot, Alain Geffard, Sylvie Biagianti, Claire Noël, Khedidja Abbaci, Jeanne Garric, Guy Charmantier, and Mireille Charmantier-Daures
Environmental Toxicology and Chemistry, 2010, Volume 29, Number 10, Page 2249
Edita Mazurová, Klára Hilscherová, Tereza Šídlová-Štěpánková, Heinz-R. Köhler, Rita Triebskorn, Dirk Jungmann, John P. Giesy, and Luděk Bláha
Journal of Soils and Sediments, 2010, Volume 10, Number 3, Page 423

Comments (0)

Please log in or register to comment.
Log in