Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 63, Issue 2


Individual variability of setal morphology in Nenteria pandioni (Acari: Mesostigmata: Uropodina): Genetic variability or aging?

Zbigniew Adamski
  • Electron and Confocal Microscope Laboratory, Adam Mickiewicz University, ul. Umultowska 89, PL-61614, Poznań, Poland
  • Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, ul. Umultowska 89, PL-61614, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jerzy Błoszyk / Dariusz Gwiazdowicz
  • Department of Forest and Environment Protection, August Cieszkowski Agricultural University, Wojska Polskiego 71C, PL-60625, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-03-27 | DOI: https://doi.org/10.2478/s11756-008-0032-0


Results of research on the chaetotaxy and morphology of setae in Nenteria pandioni (Acari: Uropodina) from Poland are presented. Certain idiosomal setae were found to be variable in structure. This variability may result from differences within the gene pool and/or from intra-specific variation associated with the process of aging. A full range of setal morphology was observed — from simple and needle-like setae to those with many notches and branches. Variability was observed only among adult mites (both sexes), not in juvenile stages. Marginal, ventral and adanal setae were most variable. Incomplete or superficial examination of setal morphology, without considering setal variability, may cause mistakes in taxonomic research and may also limit the value of this feature as diagnostic character in acarology. Therefore, variability of setae should be carefully accounted for during description of new species, because some setae are not stable in their shapes, whereas others have fixed shape. Finally, hypotheses to explain the observed pattern in setal variability in mites are proposed.

Keywords: Acari; Mesostigmata; Uropodina; Nenteria pandioni; variability; chaetotaxy; scanning electron microscopy

  • [1] Błoszyk J. 1999. Geograficzne i ekologiczne zróżnicowanie zgrupowań roztoczy z kohorty Uropodina (Acari: Mesostigmata) w Polsce. I. Uropodina lasów grądowych (Carpinion betuli) [Geographical and ecological variability of mites of the kohort Uropodina (Acari: Mesostigmata) in Poland. I Uropodine mites of oah-hornbeam forest (Carpinion betuli)]. Kontekst, Poznan, 245 pp. Google Scholar

  • [2] Błoszyk J., Adamski Z., Napierała A. & Dylewska M. 2004. Parthenogenesis as a life strategy among mites from the suborder Uropodina (Acari: Mesostigmata). Can. J. Zool. 82: 1503–1511. http://dx.doi.org/10.1139/z04-133CrossrefGoogle Scholar

  • [3] Błoszyk J., Halliday R.B. & Dylewska M. 2005. Acroseius womersleyi gen. nov., sp. nov., a new genus and species of Uropodina from Australia (Acari: Trachytidae). Syst. Appl. Acarol. 10: 41–60. Google Scholar

  • [4] Błoszyk J. & Leoniak B. 1986. Leg chaetotaxy of Oodinychus karawaiewi Berl., 1903 (Acari: Uropodina) based on observations by Evans (1972) and author’s data. Przegl. Zool. 30: 391–401. Google Scholar

  • [5] Błoszyk J. & Leoniak B. 1995. Variability of leg chaetotaxy of Oodinychus ovalis (C.L. Koch, 1839) and Leiodinychus orbicularis (C.L. Koch, 1839) (Acari: Uropodina). Biol. Bull. Pozn. 32: 89–102. Google Scholar

  • [6] Compton G.L. & Krantz G.W. 1978. Mating behavior and related morphological specialization in the Uropodine mite, Caminella peraphora. Science 200: 1300–1301. http://dx.doi.org/10.1126/science.200.4347.1300CrossrefGoogle Scholar

  • [7] Dylewska M., Błoszyk J. & Halliday R.B. 2006. Platysetosus ocultus a new genus and new species from Tasmania (Acari: Uropodina). Zootaxa 1223: 55–64. Google Scholar

  • [8] Evans G.O. 1957. An introduction to the British Mesostigmata (Acarina), with keys to families and genera. J. Linn. Soc. Lond. Zool. 43: 203–259. http://dx.doi.org/10.1111/j.1096-3642.1957.tb01552.xCrossrefGoogle Scholar

  • [9] Evans G.O. & Till W.M. 1979. Mesostigmatic mites of Britain and Ireland (Chelicerata: Acari — Parasitiformes). An introduction to their external morphology and classification. Trans. Zool. Soc. Lond. 35: 139–270. http://dx.doi.org/10.1111/j.1096-3642.1979.tb00059.xCrossrefGoogle Scholar

  • [10] Ghiradella H. 1974. Development of ultraviolet-reflecting butterfly scales: How to make an interference filter. J. Morphol. 142: 395–410. http://dx.doi.org/10.1002/jmor.1051420404CrossrefGoogle Scholar

  • [11] Gwiazdowicz J.D., Błoszyk J., Mizera T. & Tryjanowski P. 2005. Mesostigmatic mites (Acari: Mesostigmata) in White-tailed Sea Eagle nests (Haliaeetus albicilla). J. Raptor Res. 39: 60–65. Google Scholar

  • [12] Held L.I. Jr. 2002. Imaginal Discs: The Genetic and Cellular Logic of Pattern Formation. Cambridge University Press, Cambridge, 460 pp. Google Scholar

  • [13] Krantz G.W. 1978. A Manual of Acarology. 2nd ed. Oregon State University, Corvallis, Oregon, 509 pp. Google Scholar

  • [14] Mašán P. 2001. Mites of the cohort Uropodina (Acari, Mesostigmata) in Slovakia. Annot. Zool. Bot. 223: 1–320. Google Scholar

  • [15] Monteiro A., Glaser G., Stockslanger S., Glansdorp N. & Ramos D. 2006. Comparative insights into questions of lepidopteran wing pattern homology. BMC Dev. Biol. 6: 52–64. http://dx.doi.org/10.1186/1471-213X-6-52CrossrefGoogle Scholar

  • [16] Radinovsky S. 1965a. The biology and ecology of granary mites of the Pacific Northwest. III. Life history and development of Leiodinychus krameri (Acarina: Uropodidae). Ann. Entomol. Soc. Am. 58: 259–267. CrossrefGoogle Scholar

  • [17] Radinowsky S. 1965b. The biology end ecology of granary mites of the Pacific Northwest. IV. Various aspects of the reproductive behavior of Leiodinychus krameri (Acarina: Uropodidae). Ann. Entomol. Soc. Am. 58: 267–272. CrossrefGoogle Scholar

  • [18] Weatherbee S.D., Nijhout H.F., Grunert L.W, Halder G., Galant R., Selegue J & Carroll S. 1999. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr. Biol. 9: 109–115. http://dx.doi.org/10.1016/S0960-9822(99)80064-5CrossrefGoogle Scholar

  • [19] Wiśniewski J. 1997. Uropodina, pp. 202–205. In: Checklist of Animals of Poland, Vol. 4, Polska Akademia Nauk, Wrocłlaw-Warszawa-Kraków. Google Scholar

  • [20] Wiśniewski J. & Hirschmann W. 1985. Nenteria pandioni. Acarologie 32: 161–163. Google Scholar

  • [21] Wiśniewski J. & Hirschmann W. 1990. Nenteria pandioni. Ann. Zool. 43: 259–269. Google Scholar

  • [22] Wiśniewski J. & Hirschmann W. 1993. Katalog der Ganggattungen, Untergattungen, Gruppen und Arten der Uropodiden der Erde (Taxonomie, Literatur, Grősse, Verbreitung, Vorkommen). Acarologie 40: 1–220. Google Scholar

  • [23] Zhou Q., Tang S., Chen Y., Yi Y., Zhang Z. & Shen G. 2004. A scaleless wings mutant associated with tracheal system developmental deficiency in wing discs in the silkworm, Bombyx mori. Int. J. Dev. Biol. 48: 1113–1117. http://dx.doi.org/10.1387/ijdb.041845qzCrossrefGoogle Scholar

About the article

Published Online: 2008-03-27

Published in Print: 2008-04-01

Citation Information: Biologia, Volume 63, Issue 2, Pages 236–244, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0032-0.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Abdul Haseeb Khan, Zhiwen Zou, Yang Xiang, Shenghan Chen, and Xiao-Li Tian
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2018
Tsung-Jen Shen, Chi-Chien Kuo, Chin-Fah Wang, and Kun-Wei Huang
Experimental and Applied Acarology, 2014, Volume 63, Number 3, Page 361

Comments (0)

Please log in or register to comment.
Log in