Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 2

Issues

Detection of the antimicrobial peptide gene in different Amaranthus species

Radka Pribylova / Petr Kralik / Bohumila Pisarikova / Ivo Pavlik
Published Online: 2008-03-27 | DOI: https://doi.org/10.2478/s11756-008-0037-8

Abstract

Using primers to amplify the gene AMP2 in Amaranthus caudatus, we found the gene to be present in seven other species of the Amaranthus genus (A. albus, A. cruentus, A. blitum, A. hybridus, A. hypochondriacus, A. retroflexus and A. tricolor), in which it had not been described previously. The PCR products were sequenced and it was established that all the sequences were identical, except for two polymorphisms. These single nucleotide polymorphisms occurred at nucleotide positions 45 and 246. This exchange of one nucleotide for another was manifested in an amino acid change in both cases. Due to the fact that both polymorphisms lay outside the region encoding the chitin-binding peptide domain, which is crucial for antimicrobial peptide function, they will not likely affect the proper functioning of the peptide. With the exception of the above-mentioned polymorphisms, all sequences were identical to the sequence of the AMP2 gene that codes for the A. caudatus Ac-AMP2 (antimicrobial peptide isolated from Amaranthus caudatus seeds). The detection of sequences with high degree of sequence similarity to A. caudatus AMP2 gene leads us to the assumption that an antimicrobial peptide could also be produced by other amaranth species.

Keywords: amaranth; PCR; internal transcribed spacer; chitin-binding domain

  • [1] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Wheeler D.L. 2007. GenBank. Nucleic Acids Res. 35 (Database Issue): D21–D25. http://dx.doi.org/10.1093/nar/gkl986CrossrefGoogle Scholar

  • [2] Broekaert W.F., Cammue B.P.A., De Bolle M.F.C., Thevissen K., De Samblanx G.W. & Osborn R.W. 1997. Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 16: 297–323. http://dx.doi.org/10.1080/713608148Web of ScienceCrossrefGoogle Scholar

  • [3] Broekaert W.F., Marien W., Terras F.R.G., De Bolle M.F.C., Proost P., Vandamme J., Dillen L., Claeys M., Rees S.B., Vanderleyden J. & Cammue B.P.A. 1992. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine glycine-rich domain of chitin-binding proteins. Biochemistry 31: 4308–4314. http://dx.doi.org/10.1021/bi00132a023CrossrefGoogle Scholar

  • [4] Broekaert W.F., Terras F.R.G., Cammue B.P.A. & Osborn R.W. 1995. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108: 1353–1358. http://dx.doi.org/10.1104/pp.108.4.1353CrossrefGoogle Scholar

  • [5] Cammue B.P.A., De Bolle M.F.C., Schoofs H.M.E., Terras F.R.G., Thevissen K., Osborn R.W., Rees S.B. & Broekaert W.F. 1994. Gene-encoded antimicrobial peptides from plants, pp. 91–106. In: Boman H.G. (ed.), Antimicrobial Peptides-No. 186 (Ciba Foundation Symposium), John Wiley & Sons, Ltd., Chichester. http://dx.doi.org/10.1002/9780470514658.ch6CrossrefGoogle Scholar

  • [6] De Bolle M.F.C., David K.M.M., Rees S.B., Vanderleyden J., Cammue B.P.A. & Broekaert W.F. 1993. Cloning and characterization of a cDNA encoding an antimicrobial chitin-binding protein from amaranth, Amaranthus caudatus. Plant Mol. Biol. 22: 1187–1190. http://dx.doi.org/10.1007/BF00028991CrossrefGoogle Scholar

  • [7] De Bolle M.F.C., Osborn R.W., Goderis I.J., Noe L., Acland D., Hart C.A., Torrekens S., Van Leuven F. & Broekaert W.F. 1996. Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Mol. Biol. 31: 993–1008. http://dx.doi.org/10.1007/BF00040718CrossrefGoogle Scholar

  • [8] Faye L., Johnson K.D., Sturm A. & Chrispeels M.J. 1989. Structure, biosynthesis, and function of asparagine-linked glycans on plant glycoproteins. Physiol. Plant. 75: 309–314. http://dx.doi.org/10.1111/j.1399-3054.1989.tb06187.xCrossrefGoogle Scholar

  • [9] Liapkova N.S., Loskotova N.A., Maisurian A.N., Mazin V.V., Korableva N.P., Platonova T.A., Ladyzhenskaia E.P. & Evsiunina A.S. 2001. Isolation of genetically modified potato plant containing the gene of defensive peptide from Amaranthus. Prikl. Biokhim. Mikrobiol. 37: 349–354 (In Russian). Google Scholar

  • [10] Lipkin A., Anisimova V., Nikonorova A., Babakov A., Krause E., Bienert M., Grishin E. & Egorov T. 2005. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66: 2426–2431. http://dx.doi.org/10.1016/j.phytochem.2005.07.015CrossrefGoogle Scholar

  • [11] Pribylova R., Pavlik I., Rozsypalova Z. & Bartos M. 2006. A PCR-based method for the detection of genetically modified potatoes by the gene ac2 from Amaranthus caudatus. Eur. food Res. Technol. bf 223: 139–142. http://dx.doi.org/10.1007/s00217-005-0171-2Google Scholar

  • [12] Thevissen K., Terras F.R. & Broekaert W.F. 1999. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65: 5451–5458. Google Scholar

  • [13] Thomma B.P.H.J., Cammue B.P.A. & Thevissen K. 2002. Plant defensins. Planta 216: 193–202. http://dx.doi.org/10.1007/s00425-002-0902-6CrossrefGoogle Scholar

  • [14] Wilson I.G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63: 3741–3751. Google Scholar

  • [15] Xu F. & Sun M. 2001. Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Mol. Phylogenet. Evol. 21: 372–387. http://dx.doi.org/10.1006/mpev.2001.1016CrossrefGoogle Scholar

About the article

Published Online: 2008-03-27

Published in Print: 2008-04-01


Citation Information: Biologia, Volume 63, Issue 2, Pages 217–220, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0037-8.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tessa B. Moyer, Lilian R. Heil, Christine L. Kirkpatrick, Dennis Goldfarb, William A. Lefever, Nicole C. Parsley, Andrew J. Wommack, and Leslie M. Hicks
Journal of Natural Products, 2019
[2]
Domancar Orona-Tamayo, María Elena Valverde, and Octavio Paredes López
Critical Reviews in Food Science and Nutrition, 2018, Page 00
[3]
[4]
Anu Rastogi and Sudhir Shukla
Critical Reviews in Food Science and Nutrition, 2013, Volume 53, Number 2, Page 109

Comments (0)

Please log in or register to comment.
Log in