[1] Anderson J.A., Churchill G.A., Autrique J.E., Tanksley S.D. & Sorrells M.E. 1993. Optimizing parental selection for genetic linkage maps. Genome 36: 181–186. CrossrefGoogle Scholar
[2] Aggarwal R.K., Hendre P.S., Varshney R.K., Bhat P.R., Krishnakumar V. & Singh L. 2007. Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor. Appl. Genet. 114: 359–372. http://dx.doi.org/10.1007/s00122-006-0440-xWeb of ScienceCrossrefGoogle Scholar
[3] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Wheeler D.L. 2007. GenBank. Nucleic Acids Res. 35(Database Issue): D21–D25. http://dx.doi.org/10.1093/nar/gkl986CrossrefGoogle Scholar
[4] Bakoume C.R. 2006. Genetic diversity of natural oil palm (Elaeis guineensis Jacq.) populations using microsatellite markers. PhD. Thesis, Universiti Kebangsaan Malaysia, Kuala Lumpur. Google Scholar
[5] Billotte N., Risterucci A.M., Barcelos E., Noyer J.L., Amblard P. & Baurens F.C. 2001. Development, characterisation, and across-taxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome 44: 413–425. http://dx.doi.org/10.1139/gen-44-3-413CrossrefGoogle Scholar
[6] Cardle L., Ramsay L., Milbourne D., Macaulay M., Marshall D. & Waugh R. 2000. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156: 847–854. Google Scholar
[7] Chabane K., Ablett G.A., Cordeiro G.M., Valkoun J. & Henry R.J. 2005. EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet. Resour. Crop Evol. 52: 903–909. http://dx.doi.org/10.1007/s10722-003-6112-7CrossrefGoogle Scholar
[8] Doyle J.J. & Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15. Google Scholar
[9] Ewing B. & Green P. 1998. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 8: 186–194. Google Scholar
[10] Ewing B., Hillier L., Wendl M.C. & Green P. 1998. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8: 175–185. CrossrefGoogle Scholar
[11] Hamrick J.L. & Godt M.J.W. 1989. Allozyme diversity in plant species, pp. 43–63. In: Brown A.H.D, Clegg M.J, Kahler A.L & Weir B.S (eds), Plant Population Genetics, Breeding and Genetic Resources, Sinauer Associates Inc., Sunderland. Google Scholar
[12] Hartley C.W.S. 1988. The Oil Palm (Elaeis guineensis Jacq.). Longman Scientific and Technical Publication, New York, 761 pp. Google Scholar
[13] Hayati A., Wickneswari R., Maizura I. & Rajanaidu N. 2004. Genetic diversity of oil palm (Elaeis guineensis Jacq.) germplasm collections from Africa: implications for improvement and conservation of genetic resources. Theor. Appl. Genet. 108: 274–1284. http://dx.doi.org/10.1007/s00122-003-1545-0CrossrefGoogle Scholar
[14] Kularatne R.S. 2000. Assessment of genetic diversity in natural oil palm (Elaeis guineensis Jacq.) populations using amplified fragment length polymorphism markers. PhD. Thesis, Universiti Kebangsaan Malaysia, Kuala Lumpur. Google Scholar
[15] Loveless M.D. & Hamrick, J.L. 1984. Ecological determinants of genetic structure in plant population. Annu. Rev. Ecol. Syst. 15: 65–95. http://dx.doi.org/10.1146/annurev.es.15.110184.000433CrossrefGoogle Scholar
[16] Maizura I., Rajanaidu N., Zakri A.H. & Cheah S.C. 2006. Assessment of genetic diversity in oil palm (Elaeis guineensis Jacq.) using Restriction Fragment Length Polymorphism (RFLP). Genet. Res. Crop Evol. 53: 187–195. http://dx.doi.org/10.1007/s10722-004-4004-0CrossrefGoogle Scholar
[17] Mantovani A., Morellato L.P.C. & Reis M.S. 2006. Internal genetic structure and outcrossing rate in natural population of Araucaria angustifolia (Bert) O. Kuntze. J. Hered. 97: 466–472. http://dx.doi.org/10.1093/jhered/esl031CrossrefGoogle Scholar
[18] Manimekalai R. & Nagarajan P. 2006. Interrelationships among coconut (Cocos nucifera L.) accessions using RAPD technique. Genet. Res. Crop Evol. 53: 1137–1144. http://dx.doi.org/10.1007/s10722-005-1303-zCrossrefGoogle Scholar
[19] Maria M., Clyde M.M. & Cheah S.C. 1995. Cytological analysis of Elaeis guineensis (tenera) chromosomes. Elaeis 7: 122–134. Google Scholar
[20] Miller R.T., Christoffels A.G., Gopalakrishnan C., Burke J., Ptitsyn A.A., Broveak T.R. & Hide W.A. 1999. A comprehensive approach to clustering of expressed human gene sequence: the sequence tag alignment and consensus knowledge base. Genome Res. 9: 1143–1155. http://dx.doi.org/10.1101/gr.9.11.1143CrossrefGoogle Scholar
[21] Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individual. Genetics 89: 583–590. Google Scholar
[22] Purseglove J.W. 1972. Tropical Crops, Monocotyledons. London, Longman, 607 pp. Google Scholar
[23] Rajanaidu N. 1985. The oil-palm (Elaeis guineensis) collections in Africa, pp 59–83. In: International Workshop on Oil Palm Germplasm and Utilization, PORIM, Bangi, Selangor, Malaysia. Google Scholar
[24] Rajanaidu N. & Jalani B.S. 1994. Oil palm genetic resources — collection, evaluation, utilization and conservation. In: PORIM Colloquium on Oil Palm Genetic Resources, 13 September 1994, PORIM, Bangi, Malaysia. Google Scholar
[25] Rice P., Longden I. & Bleasby A. (2000) EMBOSS: the European molecular biology open software suite. Trends Genet. 16: 276–277. http://dx.doi.org/10.1016/S0168-9525(00)02024-2CrossrefGoogle Scholar
[26] Rival A., Beule T., Barre P., Hamon S., Duval Y. & Noirot M. 1997. Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis, Jacq.) tissue cultures and seed derived plants. Plant Cell Reports 16: 884–887. http://dx.doi.org/10.1007/s002990050339CrossrefGoogle Scholar
[27] Rozen S. & Skaletsky H. 2000. Primer3 on the www for general users and for biologist programmers. Methods Mol. Biol. 132: 365–386. Google Scholar
[28] Rungis D., Berube Y., Zhang J., Ralph S., Ritland C.E., Ellis B.E., Douglas C., Bohlmann J. & Ritland K. 2004. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor. Appl. Genet. 109: 1283–1294. http://dx.doi.org/10.1007/s00122-004-1742-5CrossrefGoogle Scholar
[29] Shah F.H., Rasid O., Simons A.J. & Dunsdon A. 1994. The utility of RAPD markers for the determination of genetic variation in oil palm (Elaeis guineensis). Theor. Appl. Genet. 89: 713–718. http://dx.doi.org/10.1007/BF00223710CrossrefGoogle Scholar
[30] Sneath P.H.A. & Sokal R.R. 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. Freeman, San Francisco, CA. Google Scholar
[31] Soltis D.E. & Soltis P.S. 1989. Polyploidy, breeding systems and genetic differentiation in homosporous pteridophytes, pp. 241–258. In: Soltis D.E & Soltis P.S. (eds), Isozymes in Plant Biology, Dioscorides Press, Portland, Ore. Google Scholar
[32] Temnykh S., Park W.D., Ayres N., Cartinhour S., Hauck N., Lipovich L., Cho Y.G., Ishii T. & McCouch S.R. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 698–712. http://dx.doi.org/10.1007/s001220051342CrossrefGoogle Scholar
[33] Thiel T., Michalek W., Varshney R.K. & Graner A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106: 411–422. Google Scholar
[34] Varshney R.K., Chabane K., Hendre P.S., Aggrawal R.K. & Graner A. 2007. Comparative assessment of EST-SSR, ESTSNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci. 173: 638–649. http://dx.doi.org/10.1016/j.plantsci.2007.08.010Web of ScienceCrossrefGoogle Scholar
[35] Varshney R.K., Sorrells M.E. & Graner A. 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23: 48–55. http://dx.doi.org/10.1016/j.tibtech.2004.11.005CrossrefGoogle Scholar
[36] Varshney R.K., Thiel T., Stein N., Langridge P. & Graner A. 2002. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell. Mol. Biol. Lett. 7: 537–546. Google Scholar
[37] Wang H.Y., Wei Y.M., Yan Z.H. & Zheng Y.L. 2007. EST-SSR DNA polymorphism in durum wheat (Triticum durum L.) collections. J. Appl. Genet. 48: 35–42. CrossrefGoogle Scholar
[38] Yeh F.C & Boyle T. 1999. Popgene version 1.32. The user-friendly software for population genetic analysis. University of Alberta and CIFOR, Calgary. Google Scholar
[39] Zeven A.C. 1967. The semi-wild oil palm and its industry in Africa. Agricultural Research Report 698. Agricultural University, Wageningen, The Netherlands. Google Scholar
[40] Zhang L.Y., Ravel C., Bernard M., Balfourier F., Leroy P., Feuillet C. & Sourdille P. 2006. Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among Triticeae species. Theor. Appl. Genet. 113: 407–418. http://dx.doi.org/10.1007/s00122-006-0304-4CrossrefGoogle Scholar
Comments (0)