Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 2

Issues

Determination of antioxidant activity of various extracts of Parmelia saxatilis

Tevfik Özen / Kadir Kinalioğlu
Published Online: 2008-03-27 | DOI: https://doi.org/10.2478/s11756-008-0047-6

Abstract

The work was conducted with the purpose to evaluate antioxidant activity of Parmelia saxatilis (PS) by different analytical methods. Water and methanol were used as solvents and antioxidative effects were measured by a ferric thiocyanate method (FTC) and thiobarbituric acid test (TBA). The antioxidant activity increased with the increasing amount of extracts (from 50 to 250 µg) added to linoleic acid emulsion. The methanol extract of PS exhibited high antioxidative activity that was not significantly (P < 0.05) different from α-tocopherol, while aqueous extracts of PS showed low antioxidative activity. Similar trends of antioxidant activity were observed using either the FTC or TBA methods. Antioxidant activity, reducing power, free radical scavenging (DPPH·), superoxide anion radical scavenging, metal chelating and hydrogen peroxide scavenging activities of PS extracts showed dose dependence and increased with concentration of PS extract. The results obtained in the present study indicate that the PS might be a potential source of natural antioxidant.

Keywords: Parmelia saxatilis; antioxidant activity; radical scavenging; metal chelating; total phenol

  • [1] Andlauer W. & Fürst P. 1998. Antioxidative power of phytochemicals with special reference to cereals. Cereal Foods World 43: 356–359. Google Scholar

  • [2] Bayir Y., Odabasoglu F., Cakir A., Aslan A., Suleyman H., Halici M. & Kazaz C. 2006. The inhibition of gastric mucosal lesion, oxidative stress and neutrophil-infiltration in rats by the lichen constituent diffractaic acid. Phytomed. 13: 584–590. http://dx.doi.org/10.1016/j.phymed.2005.07.002CrossrefGoogle Scholar

  • [3] Baytop T. 1999. Therapy with Medicinal Plants in Turkey (Past and Present). Istanbul University, Istanbul, 233 pp. Google Scholar

  • [4] Behera B.C., Verma N., Sonone A. & Makhija U. 2006. Determination of antioxidative potential of lichen Usnea ghattensis in vitro. Lebensmit. Wissen. Technol. 39: 80–85. Google Scholar

  • [5] Cos P., Ying L.Y., Calomme, M., Hu J.H., Cimanga K., Van Poel B., Pieters L., Vlietinck A.J. & Berghe D.V. 1998. Structure activity relationships and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Natur. Prod. 61: 71–76. http://dx.doi.org/10.1021/np970237hCrossrefGoogle Scholar

  • [6] Cotelle N., Bemier J.L., Catteau J.P., Pommery J., Wallet J.C. & Gaydou E.M. 1996. Antioxidant properties of hydroxyl-flavones. Free Rad. Biol. Med. 20: 35–43. http://dx.doi.org/10.1016/0891-5849(95)02014-4CrossrefGoogle Scholar

  • [7] Dinis T.C.P., Madeira V.M.C. & Almeida L.M. 1994. Action of phenolic derivatives (acetaminophen, salicylate and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation as peroxyl radical scavenging effects. Chem. Pharm. Bull. 36: 2090–2097. Google Scholar

  • [8] Diplock A.T. 1997. Will the ‘good fairies’ please proves to us that vitamin E lessens human degenerative of disease? Free Rad. Res. 27: 511–532. http://dx.doi.org/10.3109/10715769709065791CrossrefGoogle Scholar

  • [9] Duh P.D., Tu Y.Y. & Yen G.C. 1999. Antioxidant activity of aqueous extract of harnjyur (Chyrsanthemum morifolium Ramat). Lebensm. Wissensch. Technol. 32: 269–277 http://dx.doi.org/10.1006/fstl.1999.0548CrossrefGoogle Scholar

  • [10] Germano M.P., Pasquale D.E.R., D’Angelo V., Catania S., Silvaria V. & Costa C. 2002. Evaluation of extracts and isolated fraction from Capparis spinosa L. Buds as an antioxidant source. J. Agri. Food Chem. 50: 1168–1171. http://dx.doi.org/10.1021/jf010678dCrossrefGoogle Scholar

  • [11] Gülçin I., Oktay M., Küfrevioğlu Ö.I. & Aslan A. 2002. Determination of antioxidant activity of lichen Cetraria islandica (L.) Ach. J. Ethnopharmacol. 79: 325–329. http://dx.doi.org/10.1016/S0378-8741(01)00396-8CrossrefGoogle Scholar

  • [12] Grice H.C. 1986. Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol. 24: 1127–1130. http://dx.doi.org/10.1016/0278-6915(86)90298-XCrossrefGoogle Scholar

  • [13] Haber & Weiss 1934. The catalytic decomposition of hydrogen peroxide by iron salts, Proc. Royal Soc. London 147: 332–351. http://dx.doi.org/10.1098/rspa.1934.0221CrossrefGoogle Scholar

  • [14] Hall C.A. & Cuppett S.L. 1997. Structure-activities of natural antioxidants, pp. 141–170). In: Auroma O.I. & Cuppett S.L. (eds), Antioxidant methodology in vivo and in vitro concepts. AOCS Press, Champaign, IL. Google Scholar

  • [15] Halliwell B. 1991. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Amer. J. Med. 91(Suppl. 3C): 14–22. http://dx.doi.org/10.1016/0002-9343(91)90279-7CrossrefGoogle Scholar

  • [16] Hana D., Matsumarua K., Rettorib D. & Kaplowitza N. 2004. Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem. Pharmacol. 67: 439–451. http://dx.doi.org/10.1016/j.bcp.2003.09.032CrossrefGoogle Scholar

  • [17] Hatano T., Edamatsu R., Hiramatsu M., Moti A., Fujita Y., Yasuhara T., Yoshida T. & Okuda T. 1989. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 2016–2021. Google Scholar

  • [18] Hidalgo M.E., Fernandez E., Quilhot W. & Lissi E. 1994. Antioxidant activity of depsides and depsidones. Phytochem. 37: 1585–1587. http://dx.doi.org/10.1016/S0031-9422(00)89571-0CrossrefGoogle Scholar

  • [19] Ingolfsdottir K., Chung G.A., Skulason V.G., Gissurarson S.R. & Vilhelmsdottir M. 1999. Antimycobacterial activity of lichen metabolites in vitro. Eur. J. Pharm. Sci. 62: 141–144. Google Scholar

  • [20] Jayaprkasha G.K. & Jaganmohan Rao L. 2000. Phenolic constituents from the lichen ‘Parmotrema stuppeum’ hale and their antioxidant activity. Zeitsch. für Naturf. 55: 1018–1022. Google Scholar

  • [21] Kikizaki H & Nakatani N 1993. Antioxidant effects of some ginger constituents. J. Food Sci. 58: 1407–1410. http://dx.doi.org/10.1111/j.1365-2621.1993.tb06194.xCrossrefGoogle Scholar

  • [22] Kumar K.C. & Muller K. 1999a. Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophic, usnic, and diffractaic acid in human keratinocyte growth. J. Nat. Prod. 62: 821–823 http://dx.doi.org/10.1021/np980378zCrossrefGoogle Scholar

  • [23] Kumar K.C. & Muller K. 1999b. Lichen metabolites. 1. Inhibitory Inhibitory action against leucotriene B4 biosynthesis by a non-redox mechanism. J. Nat. Prod. 62: 817–820. http://dx.doi.org/10.1021/np9803777CrossrefGoogle Scholar

  • [24] Laranjinha J., Vieira O., Madeira V. & Almeida L. 1995. Two related phenolic antioxidants with opposite effects on vitamin E content in low density lipoproteins oxidized by ferrylmyoglobin: consumption versus regeneration. Arch. Biochem. Biophys. 323: 373–381. http://dx.doi.org/10.1006/abbi.1995.0057CrossrefGoogle Scholar

  • [25] Matthaus B. 2002. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem. 50: 3444–3452. http://dx.doi.org/10.1021/jf011440sCrossrefGoogle Scholar

  • [26] Meir S., Kanner J., Akiri B. & Hadas S.P. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agr. Food Chem. 43: 1813–1817. http://dx.doi.org/10.1021/jf00055a012CrossrefGoogle Scholar

  • [27] Mitsuda H., Yuasumoto K. & Iwami K. 1966. Antioxidation action of indole compounds during the autoxidation of linoleic acid. Eiyo to Shokuryo 19: 210–214. Google Scholar

  • [28] Modenesi P., Piana M. & Pinna D. 1998. Surface features in Parmelia sulcata (Lichenes) thalli growing in shaded or exposed habitat. Nova Hedvigia 66: 535–547. Google Scholar

  • [29] Monnet F., Bordas F., Deluchat V. & Baudu M. 2006. Toxicity of copper excess on the lichen Dermatocarpon luridum: Antioxidant enzyme activities. Chemosphere 65: 1806–1813. http://dx.doi.org/10.1016/j.chemosphere.2006.04.022CrossrefGoogle Scholar

  • [30] Moure A., Franco D., Sineiro J., Dominguez H., Numez M.J. & Lema J.M. 2000. Evaluation of extracts from Guvuina avellana hulls as antioxidants. J. Agric. Food Chem. 48: 3890–3897. http://dx.doi.org/10.1021/jf000048wCrossrefGoogle Scholar

  • [31] Nash T.H. 1996. Lichen biology. Cambridge University Press, Great Britain, 289 pp. Google Scholar

  • [32] Nishimiki M., Rao N.A. & Yagi K. 1972. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophy. Res. Com. 46: 849–853. http://dx.doi.org/10.1016/S0006-291X(72)80218-3CrossrefGoogle Scholar

  • [33] Odabasoglu F., Aslan A., Cakir A., Suleyman H., Karagoz Y., Halici M. & Bayir Y. 2004. Comparision of antioxidant activity and phenolis content of three lichen species. Phytother. Res. 18: 938–941. http://dx.doi.org/10.1002/ptr.1488CrossrefGoogle Scholar

  • [34] Soktay M., Gulcin I. & Kufrevioglu O.I. 2003. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Food Sci. Technol. 36: 263–271. Web of ScienceGoogle Scholar

  • [35] Oyaizu M. 1986. Studies on products of browing reaction: Antioxidative activity of product of browing reaction preapared from glucosamine. Jap. J. Nurtion. 44: 307–315. Google Scholar

  • [36] Ruch R.J., Cheng S.J. & Klaunig J.E. 1989. Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10: 1003–1008. http://dx.doi.org/10.1093/carcin/10.6.1003CrossrefGoogle Scholar

  • [37] Slinkard K. & Singleton V.L. 1977. Total phenol analyses: Automation and comparison with manual methods. Amer. J. Enol. Viticul. 28: 49–55. Google Scholar

  • [38] Tanaka M., Kuei C.W., Nagashima Y. & Taguchi T. 1998. Application of antioxidative maillrad reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaishi 54: 1409–1414. Google Scholar

  • [39] Van Acker S.A.B.E., Van Balen G. P., Van den Berg D. J., Bast A. & Van der Vijgh S.A.B.E. 1998. Influence of iron chelation on the antioxidant activity of flavonoids. Biochem. Pharmacol. 56: 935–943. http://dx.doi.org/10.1016/S0006-2952(98)00102-6CrossrefGoogle Scholar

  • [40] Wichi H.P. 1988. Enhanced tumor development by butylated hydroxyanisol (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 26: 717–723. http://dx.doi.org/10.1016/0278-6915(88)90072-5CrossrefGoogle Scholar

  • [41] Wickens A.P. 2001. Aging and the free radical theory, Respirat. Physiol. 128: 2001, 379–391. Google Scholar

  • [42] Ye X.Y., Wang H.X., Liu F. & Nig T.B. 2000. Ribonuclease, cell-free translation-inhibitory and superoxide scavenging activities of the iron-binding protein lactoferrin from bovine mill. Int. J. Biochem. Cell Biol. 32: 235–241. http://dx.doi.org/10.1016/S1357-2725(99)00131-4CrossrefGoogle Scholar

  • [43] Yilidirim A., Oktay M. & Bilaloglu V. 2001. The antioxidant activity of the leaves of Cydonia vulgaris. Turk. J. Med. Sci. 31: 23–27. Google Scholar

About the article

Published Online: 2008-03-27

Published in Print: 2008-04-01


Citation Information: Biologia, Volume 63, Issue 2, Pages 211–216, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0047-6.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dilek Pandır, Müge Hilooglu, and Mustafa Kocakaya
Environmental Science and Pollution Research, 2018
[2]
Carlos Fernández-Moriano, María Pilar Gómez-Serranillos, and Ana Crespo
Pharmaceutical Biology, 2016, Volume 54, Number 1, Page 1
[3]
M. Pilar Gómez-Serranillos, Carlos Fernández-Moriano, Elena González-Burgos, Pradeep Kumar Divakar, and Ana Crespo
RSC Adv., 2014, Volume 4, Number 103, Page 59017
[4]
R. Rasool, B.A. Ganai, S. Akbar, and A.N. Kamili
Chinese Journal of Natural Medicines, 2013, Volume 11, Number 4, Page 377
[5]
Vasudeo P. Zambare and Lew P. Christopher
Pharmaceutical Biology, 2012, Volume 50, Number 6, Page 778
[6]
Marijana M Kosanić, Branislav R Ranković, and Tatjana P Stanojković
Journal of the Science of Food and Agriculture, 2012, Volume 92, Number 9, Page 1909

Comments (0)

Please log in or register to comment.
Log in