Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

See all formats and pricing
More options …
Volume 63, Issue 3 (Jun 2008)


Contrast adaptation to time constraints on development of two pre-dispersal predators of dandelion (Taraxacum officinale) seed

Zdenka Martinková / Alois Honěk
Published Online: 2008-05-05 | DOI: https://doi.org/10.2478/s11756-008-0055-6


Pre-dispersal seed predators of quickly maturing inflorescences of Asteraceae are constrained by shortage of development time. At seed dispersal, they should pupate or, if still immature, relocate into another inflorescence. To investigate how dominant coleopteran predators of dandelion seed, Glocianus punctiger (Curculionidae) and Olibrus bicolor (Phalacridae), cope with time limitation we combined observation (development and temperature of dandelion capitulum, thermal constants of predator development, age structure of larval populations at seed dispersal) and analogy (“rate isomorphy” in predator development, comparing “model” coleopteran species with similar temperature requirements). Development of a dandelion capitulum takes 21 days. The time available to G. punctiger (140–190 day degrees, development threshold 6.3°C) is sufficient to complete development and pupate after seed dispersal. By contrast, only 30–50 day degrees are available to O. bicolor (threshold 13.5°C) and this is not enough to complete development and consequently immature larvae should move to other capitula to continue feeding until pupation. These contrast strategies which are determined by this thermal adaptation, are accompanied by differences in larval morphology. The “cold adapted” G. punctiger has an apodous larva not capable of migrating between capitula while the “warm adapted” O. bicolor has a mobile campodeiform larva capable of migration.

Keywords: Curculionidae; Phalacridae; Coleoptera; lower development threshold; temperature; larva; morphology

  • [1] Adachi I. 1994. Development and life cycle of Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae) on citrus trees under fluctuating and constant temperature regimes. Appl. Entomol. Zool. 29: 485–497. Google Scholar

  • [2] Ali A.W., Wetzel T. & Heyer W. 1977. Ergebnisse von Untersuchungen über die Effektivtemperatursummen einzelner Entwicklungsstadien der Getreidehähnchen (Lema spp.). Arch. Phytophathol. Pfl-Schutz 13: 425–433. CrossrefGoogle Scholar

  • [3] Bacheler J.S., Jones J.W., Bradley J.R. & Bowen H.D. 1975. The effect of temperature on development and mortality of boll weevil immature stages. Environ. Entomol. 4: 808–811. CrossrefGoogle Scholar

  • [4] BenAzouri A. 1990. Contribution á l’etude du cycle biologique de Phloetribus scarabeoides (Bern) (Col. Scolytidae) dans la region de Taroudant (Maroc). Al Awamia 73: 87–101. Google Scholar

  • [5] Butler G.D. & Ritchie P.L. 1967. The life cycle of Hypera brunneipennis and a parasite, Bathyplectes curculionis, in relation to temperature. J. Econ. Entomol. 60: 1239–1241. CrossrefGoogle Scholar

  • [6] Campagna G. & Rapparini G. 2002. Sviluppo di mezzi biologici per il contenimiento delle malerbe. Informatore Agrario 58: 53–58. Google Scholar

  • [7] Chan W.P., Ellsbury M.M. & Baker G.T. 1990. Effects of temperature on preimaginal development of Hypera meles (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 83: 1116–1124. CrossrefGoogle Scholar

  • [8] Crawley M.J. 1997. Plant-Herbivore Dynamics, pp. 401–474. In: Crawley, M.J. (ed.), Plant Ecology, 2nd ed., Blackwell, Oxford. Google Scholar

  • [9] DeLoach C.J. & Cordo H.A. 1976. Life cycle and biology of Neochetina brucki, a weevil attacking waterhyacinth in Argentina, with notes on N. eichhorniae. Ann. Entomol. Soc. Am. 69: 643–652. CrossrefGoogle Scholar

  • [10] Dixon A.F.G., Jarošík V. & Honěk A. 2005. Thermal requirements for development and resource partitioning in aphidophagous guilds. Eur. J. Entomol. 102: 407–411. CrossrefGoogle Scholar

  • [11] Fan Y., Groden E. & Drummond F.A. 1992. Temperature-dependent development of Mexican bean beetle (Coleoptera: Coccinellidae) under constant and variable temeratures. J. Econ. Entomol. 85: 1762–1770. CrossrefGoogle Scholar

  • [12] Fenner M., Cresswell J.E. & Hurley R.A. 2002. Relationship between capitulum size and pre-dispersal seed predation by insect larvae in common Asteraceae. Oecologia 130: 72–77. CrossrefGoogle Scholar

  • [13] Ferro D.N., Logan J.A., Voss R.H. & Elkinton J.S. 1985. Colorado potato beetle (Coleoptera: Chrysomelidae) temperature-dependent growth and feeding rates. Environ. Entomol. 14: 343–348. CrossrefGoogle Scholar

  • [14] Fornasari L. 1995. Temperature effects on the embryonic development Aphtona abdominalis (Coleoptera: Chrysomelidae), a natural enemy of Euphorbia escula (Euphorbiales: Euphorbiaceae). Environ. Entomol. 24: 720–723. CrossrefGoogle Scholar

  • [15] Guppy J.C. & Harcourt G.G. 1978. Effects of temperature on development of the immature stages of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae). Can. Entomol. 110: 257–263. CrossrefGoogle Scholar

  • [16] Guppy J.C. & Mukerji M.K. 1974. Effects of temperature on developmental rate of the immature stages of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae). Can. Entomol. 106: 93–100. CrossrefGoogle Scholar

  • [17] Honěk A. 1996. The relationship between thermal constants for insect development: a verification. Acta Soc. Zool. Bohem. 60: 115–152. Google Scholar

  • [18] Honěk A. 1999. Constraints on thermal requirements for insect development. Entomol. Sci. 2: 615–621. Google Scholar

  • [19] Honěk A., Jarošik V., Martinková Z. & Novák I. 2002. Food induced variation in thermal constants of development and growth of Autographa gamma (Lepidoptera: Noctuidae) larvae. Eur. J. Entomol. 99: 241–252. CrossrefGoogle Scholar

  • [20] Honěk A. & Kocourek F. 1988. Thermal requirements for development of aphidophagous Coccinellidae (Coleoptera), Chrysopidae (Neuroptera), and Syrphidae (Diptera): some general trends. Oecologia 76: 455–460. CrossrefGoogle Scholar

  • [21] Honěk A. & Kocourek F. 1990. Temperature and development time in insects: a general relationship between thermal constants. Zool. Jb. Syst. 117: 401–439. Google Scholar

  • [22] Honěk A. & Martinková Z. 2005. Pre-dispersal predation of Taraxacum officinale (dandelion) seed. J. Ecol. 93: 335–344. http://dx.doi.org/10.1111/j.1365-2745.2005.00986.xCrossrefGoogle Scholar

  • [23] Honěk A., Martinková Z., Hůrka K. & Štys P. 2005. Insect community in maturing capitula of dandelion (Taraxacum officinale). Biologia 60: 559–565. Google Scholar

  • [24] Hsieh F., Roberts S.J. & Ambrus E.J. 1974. Developmental rate and population of alfalfa weevil larvae. Environ. Entomol. 3: 593–597. CrossrefGoogle Scholar

  • [25] Hurpin B. 1956. Influence de la temperature et de l’humidité de sol sur le developpement embryonaire du Hanneton commun (Melolontha melolontha L.). Rev. Pathol. Veg. Entomol. Agric. Fr. 35: 75–92. Google Scholar

  • [26] Hurpin B. 1962. Superfamille des Scarabeoidea, pp. 24–204. In: Balachowsky A.S. (ed.), Entomologie Appliquée a l’Agriculture, Tome 1, Coleoptéres. Mason et Cie, Paris. Google Scholar

  • [27] Jackson C.G. & Elliott N.C. 1988. Temperature-dependent development of immature stages of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ. Entomol. 17: 166–171. CrossrefGoogle Scholar

  • [28] James D.G. & Voegele B. 2000. Development and survivorship of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus humeralis (F.) (Coleoptera: Nitidulidae) over a range of constant temperatures. Aust. J. Entomol. 39: 180–184. http://dx.doi.org/10.1046/j.1440-6055.2000.00163.xCrossrefGoogle Scholar

  • [29] Jarošik V., Honěk A. & Dixon A.F.G. 2002. Developmental rate isomorphy in insects and mites. Am. Nat. 160: 497–510. http://dx.doi.org/10.1086/342077CrossrefGoogle Scholar

  • [30] Julien M.H. & Bourne A.S. 1983. Temperature relations of Perapion antiquum (Col., Curculionidae), a weevil introduced to control the weed Emex australis in Australia. Z. Angew. Entomol. 95: 351–360. CrossrefGoogle Scholar

  • [31] King J.E., Price R.G., Young J.H., Willson L.J. & Pinkston K.N. 1985. Influence of temperature on development and survival of the immature stages of the elm leaf beetle, Pyrrhalta luteola (Muller) (Coleoptera: Chrysomelidae). Environ. Entomol. 14: 272–274. CrossrefGoogle Scholar

  • [32] Kirschner J., Štěpánek J. & Trávníček B. 2002. Taraxacum Wigg. — pampeliška (smetánka), pp. 686–702. In: Kubat K. (ed.), Klíč ke květeně České republiky [Key to the Flora of the Czech Republic], Academia, Praha. Google Scholar

  • [33] Kwong S. 1980. A rearing method for Sitona humeralis Stephens (Coleoptera: Curculionidae), and its development under controlled conditions. Bull. Entomol. Res. 70: 97–102. CrossrefGoogle Scholar

  • [34] Lactin D.J. & Holliday N.J. 1992. Constant-temperature development rates of pre-imaginal Colorado potato beetles (Leptinotarsa decemlineata (Say), Coleoptera: Chrysomelidae) from Manitoba and British Columbia. Proc. Entomol. Soc. Manitoba 48: 1–13. Google Scholar

  • [35] Litsinger J.A. & Apple J.W. 1973. Thermal requirements for embryonic and larval development of the alfalfa weevil in Wisconsin. J. Econ. Entomol. 66: 309–311. CrossrefGoogle Scholar

  • [36] Logan J.A., Casagrande R.A., Faubert H.H. & Drummond F.A. 1985. Temperature-dependent development and feeding of immature Colorado potato beetle Lepinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Environ. Entomol. 14: 275–284. CrossrefGoogle Scholar

  • [37] Loi G. & Belcari A. 1983. Influenza della temperatura sullo sviluppo degli stadi preimaginali del coleottero crisomelide Chrysomela populi L. Frustula Entomol. N. S. 6: 87–101. Google Scholar

  • [38] Madubunyi L.C. & Koehler C.S. 1974. Effects of photoperiod and temperature development in Hypera brunneipennis. Environ. Entomol. 3: 1017–1021. CrossrefGoogle Scholar

  • [39] Martel P., Svec H.J. & Harris C.R. 1976. The life history of the carrot weevil, Listronotus oregonensis (Coleoptera, Curculionidae) under controlled conditions. Can. Entomol. 108: 931–934. CrossrefGoogle Scholar

  • [40] McAvoy T.J. & Kok L.T. 1985. Viability and developmental rate of everwintering eggs of Trichosirocalus horridus (Coleoptera: Curculionidae). Environ. Entomol. 14: 285–288. Google Scholar

  • [41] McAvoy T.J., Kok L.T. & Trumble J.T. 1983. Biological studies of Ceutorhynchus punctiger (Coleoptera: Curculionidae) on dandelion in Virginia. Ann. Entomol. Soc. Am. 76: 671–674. CrossrefGoogle Scholar

  • [42] Mellors W.K. & Allegro A. 1984. Comparison of constant and alternating temperatures for determining developmental rates of Mexican bean beetle eggs and pupae. Ann. Entomol. Soc. Am. 77: 6–10. CrossrefGoogle Scholar

  • [43] Mullen M.A. 1981. Sweetpotato weevil, Cylas formicarius elongatulus (Summers): development, fecundity, and longevity. Ann. Entomol. Soc. Am. 74: 478–481. CrossrefGoogle Scholar

  • [44] Nteletsana L., Schoeman A.S. & McGeoch M.A. 2001. Temperature effects on development of the sweetpotato weevil, Cylas puncticollis Boehman (Coleoptera: Apionidae). African Entomol. 9: 49–57. Google Scholar

  • [45] Perdikis D.C., Fantinou A.A. & Lykouressis D.P. 2003. Constant rate allocation in nymphal development in species of Hemiptera. Physiol. Entomol. 28: 331–339. http://dx.doi.org/10.1111/j.1365-3032.2003.00356.xCrossrefGoogle Scholar

  • [46] Radde G. 1974. Beobachtungen zur Entwicklung von Rüselkäfern (1). Entomol. Nachr. 18: 44–47. Google Scholar

  • [47] Reitter E. 1912. Fauna Germanica. Vol. 3. KG Lutz Verlag, Stuttgart, 465 pp. Google Scholar

  • [48] Satomura H. 1950. Relations of temperature to the development of the larval and pupal stages of Phyllotreta vittata. Oyo Kontyu 6: 1–9. Google Scholar

  • [49] Schaafsma A.W., Whitfield G.H. & Ellis C.R. 1991. A temperature-dependent model of egg development of the western corn rootworn, Diabrotica virgifera LeConte (Coleoptera: Chrysomelidae). Can. Entomol. 123: 1183–1197. http://dx.doi.org/10.4039/Ent1231183-6CrossrefGoogle Scholar

  • [50] Schroder R.F.W. & Steinhauer A.L. 1976. Effect of photoperiod and temperature regimens of the biologz of European and United States alfalfa weevil populations. Ann. Entomol. Soc. Am. 69: 701–706. CrossrefGoogle Scholar

  • [51] Sherrod D.W., White C.E. & Eastman C.E. 1982. Temperature-related development of the imported crucifer weevil, Baris lepidii (Coleoptera: Curculionidae), in the laboratory and field. Environ. Entomol. 11: 897–900. CrossrefGoogle Scholar

  • [52] Simonet D.E. & Devenport B.L. 1981. Temperature requirements for development and oviposition of the carrot weevil. Ann. Entomol. Soc. Am. 74: 312–315. CrossrefGoogle Scholar

  • [53] Smith L. & Kok L.T. 1985. Influence of temperature on the development and mortality of immature Rhinocyllus conicus (Coleoptera: Curculionidae). Environ. Entomol. 14: 629–633. CrossrefGoogle Scholar

  • [54] Stenseth C. 1979. Effects of temperature on development of Otiorrhynchus sulcatus (Coleoptera: Curculionidae). Ann. Appl. Biol. 91: 179–185. http://dx.doi.org/10.1111/j.1744-7348.1979.tb06488.xCrossrefGoogle Scholar

  • [55] Stewart-Wade S.M., Neumann S., Collins L.L. & Boland G.J. 2002. The biology of Canadian wees. 117. Taraxacum officinale G.H. Weber ex Wiggers. Can. J. Plant Sci. 82: 825–853. Google Scholar

  • [56] Sue K., Ferro D.N. & Emberson R.M. 1980. A rearing method for Sitona humeralis Stephens (Coleoptera: Curculionidae) and its development under controlled conditions. Bull. Entomol. Res. 70: 97–102. http://dx.doi.org/10.1017/S0007485300009809CrossrefGoogle Scholar

  • [57] Tarrant C.A. & McCoy C.W. 1989. Effect of temperature and relative humidity on the egg and larval stages of some citrus root weevils. Florida Entomol. 72: 117–123. http://dx.doi.org/10.2307/3494976CrossrefGoogle Scholar

  • [58] Tauber C.A., Tauber M.J., Gollands B., Wright R.J. & Obrycki J. 1988. Preimaginal development and reproductive responses to temperature in two populations of the colorado potato beetle (Coleptera: Chrysomalidae). Ann. Entomol. Soc. Am. 81: 755–763. CrossrefGoogle Scholar

  • [59] Taylor R.G. & Harcourt D.G. 1978. Effect of temperature on developmental rate of the immature stages of Crioceris asparagi (Coleoptera: Chrysomelidae). Can. Entomol. 110: 57–62. http://dx.doi.org/10.4039/Ent11057-1CrossrefGoogle Scholar

  • [60] Trudgill D.L. 1995. Why do tropical poikilothermic organisms tend to have higher threshold temperature for development than temperature ones. Funct. Ecol. 9: 136–137. Google Scholar

  • [61] Trudgill D.L., Honek A., Li D. & Van Straalen N.M. 2005. Thermal time — concepts and utility. Ann. Appl. Biol. 146: 1–14. http://dx.doi.org/10.1111/j.1744-7348.2005.04088.xCrossrefGoogle Scholar

  • [62] Tweney J. & Mogie M. 1999. The relationship between achene weight, embryo weight and germination in Taraxacum apomicts. Ann. Bot. 83: 45–50. http://dx.doi.org/10.1006/anbo.1998.0790CrossrefGoogle Scholar

  • [63] Uscidda C. & Crovetti A. 1983. Influenza della temperatura sullo sviluppo degli studi preimaginali di Galeruca sardoa (Gene) (Coleoptera Chrysomelidae). Frustula Entomol. N. S. 6: 45–68. Google Scholar

  • [64] Walgenbach J.F. & Wyman J.A. 1984. Colorado potato beetle (Coleoptera: Chrysomalidae) development in relation to temperature in Wisconsin. Ann. Entomol. Soc. Am. 77: 604–609. CrossrefGoogle Scholar

  • [65] Ward R.H. & Pienkowiski R.L. 1978. Biology of Cassida rubiginosa, a thirtle-feeding shield beetle. Ann. Entomol. Soc. Am. 71: 585–591. CrossrefGoogle Scholar

  • [66] Wightman J.A. 1973. Effect of environment on Costelytra zealandica (Coloptera: Scarabaeidae). 2. Effect of temperature and soil moisture on duration and survival of the egg stage. N. Z. J. Sci. 16: 41–52. Google Scholar

  • [67] Woodson W.D. & Edelson J.V. 1988. Developmental rate as a function of temperature in a carrot weevil, Listronotus texanus (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 81: 252–254. CrossrefGoogle Scholar

  • [68] Woodson W.D. & Jackson J.J. 1996. Developmental rate as a function of temperature in northern corn rootworm (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 89: 226–230. CrossrefGoogle Scholar

  • [69] Woodson W.D., Jackson J.J. & Ellsbury M.M. 1996. Northern corn rootworm (Coleoptera: Chrysomelidae) temperature requirements for egg development. Ann. Entomol. Soc. Am. 89: 898–903. CrossrefGoogle Scholar

About the article

Published Online: 2008-05-05

Published in Print: 2008-06-01

Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0055-6.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Qing'an Meng, Qianbin Wang, Kaibin Zhao, Pengwei Wang, Peiqing Liu, Huan Liu, and Lei Jiang
Advanced Functional Materials, 2016, Volume 26, Number 41, Page 7378
Natalia A. Matushkina, Sergij V. Riasanov, Dariia V. Shyriaieva, Volodymyr A. Gorobchishin, and Alex V. Gumovsky
Urban Ecosystems, 2016, Volume 19, Number 3, Page 1119
European Journal of Entomology, 2016, Volume 113, Page 173
Zuzana Münzbergová, Jiří Skuhrovec, and Petr Maršík
Biological Journal of the Linnean Society, 2015, Volume 115, Number 2, Page 270
Z Martinkova, A Honek, and Paula Westerman
Weed Research, 2014, Volume 54, Number 5, Page 501
Jonathan G. Lundgren, Pavel Saska, and Alois Honěk
Ecology and Evolution, 2013, Volume 3, Number 6, Page 1642
Weed Research, 2011, Volume 51, Number 5, Page 508
Alois Honek, Zdenka Martinkova, Pavel Saska, and Stanislava Koprdova
Agriculture, Ecosystems & Environment, 2009, Volume 134, Number 1-2, Page 126
Z. Martinkova, A. Honek, and S. Pekar
Grass and Forage Science, 2009, Volume 64, Number 2, Page 160

Comments (0)

Please log in or register to comment.
Log in