Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 3

Issues

PCR based fingerprinting of Westiellopsis cultures with short tandemly repeated repetitive (STRR) and highly iterated palindrome (HIP) sequences

Govindan Selvakumar / Ganesan Gopalaswamy
Published Online: 2008-05-05 | DOI: https://doi.org/10.2478/s11756-008-0065-4

Abstract

The presence of repetitive DNA sequences viz., short tandemly repeated repetitive (STRR) and highly iterated palindrome (HIP), in the cyanobacterial genome were used to generate a PCR-based fingerprint pattern of nine cyanobacterial cultures (both stress tolerant and non-tolerant), belonging to the genus Westiellopsis. By this method it was possible to generate distinguishing fingerprint patterns for all the isolates and cluster isolates with similar stress tolerance properties. This study reveals the utility of repetitive DNA sequences in the cyanobacterial genome, for differentiation of Westiellopsis cultures and clustering strains that posses similar stress tolerance properties.

Keywords: repetitive DNA sequences; cyanobacteria; stress tolerance; Westiellopsis

  • [1] Amsaveni P. 1995. Effect of certain nutrients on the growth and ammonia excretion by saline tolerant cyanobacteria and their role as biofertilizers for bioreclamation of saline and sodic soils. Dissertation, Tamil Nadu Agricultural University, Coimbatore, India. Google Scholar

  • [2] Brunk C.F., Jones K.C. & James T.W. 1979. Assay for nanogram quantities of DNA in cellular homogenates. Anal. Biochem. 92: 497–500. http://dx.doi.org/10.1016/0003-2697(79)90690-0CrossrefGoogle Scholar

  • [3] Georghiou P.R., Dogget A.M., Kielhofner M.A., Stout J.E., Watson D.A., Lupski J.R. & Hamill R.J. 1994. Molecular finger-printing of Legionella species by repetitive element PCR. J. Clin. Microbiol. 32: 2989–2994. Google Scholar

  • [4] Gopalaswamy G., Tamilselvam B. & Kannaiyan S. 2002. Biomass production and biochemical characterization of acid tolerant cyanobacteria. Indian J. Microbiol. 42:121–124. Google Scholar

  • [5] Gopalaswamy G., Tamilselvam B., Selvakumar G., Sudarshan S. & Kannaiyan S. 2000. Performance of Westiellopsis as an effective stress tolerant cyanobacteria, abstract p. 230. In: The Asia Pacific Conf. Plant Tissue Culture and Agricultural Biotechnology, National University, Singapore. Google Scholar

  • [6] Guevara R., Armesto J.J. & Carce M. 2002. Genetic diversity of Nostoc microsymbionts from Gunnera tinctoria revealed by PCR STRR fingerprinting. Microb. Ecol. 44: 127–136. http://dx.doi.org/10.1007/s00248-002-1019-yCrossrefGoogle Scholar

  • [7] Gugger M.F. & Hoffman L. 2004. Polyphyly of true branching cyanobacteria. Int. J. Syst. Evol. Microbiol. 54: 349–357. http://dx.doi.org/10.1099/ijs.0.02744-0CrossrefGoogle Scholar

  • [8] Gupta A., Morby A.P., Turner J.J., Whitton B.A. & Robinson N.I. 1993. Deletion within the metallothionin loci of a cadmium tolerant Synechococus PCC 6301 involving a Highly Iterated Palindrome (HIPI). Mol. Microbiol. 14: 681–689. Google Scholar

  • [9] Haselkorn R. 1978. Heterocysts. Annu. Rev. Plant. Physiol. 29: 319–344. http://dx.doi.org/10.1146/annurev.pp.29.060178.001535CrossrefGoogle Scholar

  • [10] Jaccard P. 1908. Nouvelles recherches sur la distribution florale. Bulletin de la Society Vaudiose des Sciences Naturelles. 44: 223–270. Google Scholar

  • [11] Katayama T., Okamato S., Narikawa R., Fujisawa T., Kawashima S., Itoh M., Ohomori M. & Kanehisa M. 2002. Comprehensive analysis of tandem repetitive sequences in cyanobacteria genome. Genome Informatics 13: 400–401. Google Scholar

  • [12] Komarek J. 1991. A review of water bloom forming Microcystis species with regard to population in Japan. Algol. Stud. 64: 115–127. Google Scholar

  • [13] Laguerre G., Maringui P., Allard M.R., Charnay M.P., Houvrier P., Mazurier S.I., Rigottier-Gois H. & Amarger N. 1996. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl. Environ. Microbiol. 62: 2029–2036. Google Scholar

  • [14] Martin B.O., Humburt M., Camara E., Gueuzi J., Walter T., Mitchell P., Andrew M., Prudhomme G., Alloing R., Hattenbreek D.A., Monison G.J., Brulnois E. & Clauwys J.P. 1992. A highly conserved iterated DNA element located in the chromosomes of S. pneumoniae. Nucleic Acids Res. 20: 3479–3488. http://dx.doi.org/10.1093/nar/20.13.3479CrossrefGoogle Scholar

  • [15] Masepohl B., Gorlitz K. & Bohme H. 1996. Long tandemly repetitive (LTRR) sequences in the filamentous cyanobacteria Anabaena sp. PCC 7120. Biochim. Biophys. Acta 1307: 26–30. Google Scholar

  • [16] Mazel D., Houmard I., Castets A.M. & Tandeau de Marsac N. 1990. Highly repetitive DNA sequences in cyanobacterial genomes. J. Bacteriol. 172: 2755–2761. Google Scholar

  • [17] Melody S.C. 1997. Plant Molecular Biology — A Laboratory Manual. Springer, New York. Google Scholar

  • [18] Nilsson M., Bergman B. & Rasmussen U. 2000. Cyanobacterial diversity in geographically related and distant host plants of the genus Gunnera. Arch. Microbiol. 173: 97–102. http://dx.doi.org/10.1007/s002039900113CrossrefGoogle Scholar

  • [19] Prasanna R., Kumar R., Sood A., Prasanna B.M. & Singh P.K. 2006. Morphological, physiological and molecular characterization of Anabaena stains. Microbiol. Res. 161: 187–202. http://dx.doi.org/10.1016/j.micres.2005.08.001CrossrefGoogle Scholar

  • [20] Rao D.R., Thangavel C., Kabilan L., Suguna S., Mani T.R. & Shanmugasundaram. S. 1999. Larvicidal properties of the cyanobacterium Westiellopsis sp. (blue-green algae) against mosquito vectors. Trans R. Soc. Trop. Med. Hyg. 93: 232. http://dx.doi.org/10.1016/S0035-9203(99)90002-0CrossrefGoogle Scholar

  • [21] Rasmussen U. & Svenning M. M. 1998. Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl. Environ. Microbiol. 64: 265–272. Google Scholar

  • [22] Rippka R., Deruelles. J., Waterbury J.B., Herdman M. & Stanier R.Y. 1979. Generic assignments stain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1–61. CrossrefGoogle Scholar

  • [23] Rivera I.G., Choudhary A.R., Huq A., Jacobs D., Martins M.T. & Colwell R.R. 1995. Enterobacterial intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio cholerae O1, O139 and non-O1 strains. Appl. Environ. Microbiol. 61: 2898–2904. Google Scholar

  • [24] Rodriguez-Barradas M.C., Hamill R.J., Houston E.D., Georghiou P.R., Clarridge J.E., Regrury R.L. & Kochler J.E. 1995. Genomic fingerprinting of Bartonella species by repetitive element PCR for distinguishing species and isolates. J. Clin. Microbiol. 33: 1089–1093. Google Scholar

  • [25] Rohlf F.J. 1995. NTSYS-PC Numerical taxonomy and multivariate analysis system. Version 1.80. Exeter Software. Setauket, New York. Google Scholar

  • [26] Rouhianen H., Sivonen K., Buikema W.I. & Haselkorn R. 1995. Characterization of toxin producing cyanobacteria by using an oligonucleotide probe containing a tandemly repeated heptamer. J. Bacteriol 177: 6021–6026. Google Scholar

  • [27] Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Google Scholar

  • [28] Selvakumar G., Gopalaswamy G. & Kannaiyan S. 2001. Isolation and characterization of cyanobacterial isolates from herbicide applied rice soil. Phykos 40: 129–133. Google Scholar

  • [29] Selvakumar G., Gopalaswamy G. & Kannaiyan S. 2002. Pigment analysis and ammonia excretion in herbicide tolerant cyanobacteria. Indian J. Exp. Biol. 40: 934–940. Google Scholar

  • [30] Shalini, Dhar D.W. & Gupta R.K. 2007. Phylogenetic analysis of cyanobacterial strains of genus—Calothrix by single and multiple randomly amplified polymorphic DNA-PCR. World J. Microbiol. Biotechnol. DOI: 10.1007/s11274-007-9569-2. CrossrefWeb of ScienceGoogle Scholar

  • [31] Smith J.K., Parry J.D. & Day J.G. 1998. A PCR technique based on HIP 1 interspersed repetitive sequence distinguishes cyanobacterial species and strains. Microbiology 144: 2791–2801. http://dx.doi.org/10.1099/00221287-144-10-2791Google Scholar

  • [32] Sudarshan S., Gopalaswamy G. & Kannaiyan S. 2001. Genetic diversity analysis of stress tolerant cyanobacterial cultures using isozymes, pp. 33–40. In: Karampuri S. & Rao D. (eds) Proceedings of the National Conference on Plant Biotechnology, Warangal, India. Google Scholar

  • [33] Tamilselvam B., Gopalaswamy G. & Kannaiyan S. 2001. Isolation and characterization of acid tolerant cyanobacterial cultures from acid soils of Tamil Nadu. Phykos 40: 143–148. Google Scholar

  • [34] Versalovic J., Koeuth T. & Lupski J.R. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19: 6823–6831. http://dx.doi.org/10.1093/nar/19.24.6823CrossrefGoogle Scholar

  • [35] Versalovic J., Schneider M., de Bruijn F.J. & Lupski J.R. 1994. Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Cell. Biol. 5: 25–40. Google Scholar

  • [36] Ward D.M., Weller R. & Bateson M.M. 1990. 16S rRNA sequences reveal numerous unclustered microorganisms in a natural community. Nature 345: 63–65. http://dx.doi.org/10.1038/345063a0CrossrefGoogle Scholar

  • [37] Zheng W., Nilsson M., Bergman B. & Rasmussen U. 1999. Genetic diversity and classification of cyanobacteria in different Azolla species by the use of PCR finger printing. Theor. Appl. Genet. 99: 1187–1193. http://dx.doi.org/10.1007/s001220051323CrossrefGoogle Scholar

  • [38] Zheng W., Song T., Bao X., Bergman B. & Rasmussen U. 2002. High cyanobacterial diversity in coralloid roots of cycads revealed by PCR fingerprinting. FEMS Microbiol. Ecol. 40: 215–222. http://dx.doi.org/10.1111/j.1574-6941.2002.tb00954.xCrossrefGoogle Scholar

About the article

Published Online: 2008-05-05

Published in Print: 2008-06-01


Citation Information: Biologia, Volume 63, Issue 3, Pages 283–288, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0065-4.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Abdullah A. Saber, Marco Cantonati, Jan Mareš, Andrea Anesi, and Graziano Guella
Phycologia, 2017, Volume 56, Number 6, Page 697
[2]
Prashant Singh, Manish Singh Kaushik, Meenakshi Srivastava, and Arun Kumar Mishra
Physiology and Molecular Biology of Plants, 2014, Volume 20, Number 3, Page 331

Comments (0)

Please log in or register to comment.
Log in