Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 5

Issues

Hemocytes/coelomocytes DNA content in five marine invertebrates: cell cycles and genome sizes

Maja Fafanđel / Nevenka Bihari / Mirta Smodlaka / Sanda Ravlić
Published Online: 2008-09-11 | DOI: https://doi.org/10.2478/s11756-008-0127-7

Abstract

The hemocytes/coelomocytes DNA content in five selected marine invertebrates (sea mouse Aphrodita aculeata, spiny crab Maja crispata, sea star Echinaster sepositus, sea urchin Paracentrotus lividus, and tunicate Phallusia mammillata) was investigated by flow cytometry. The cell cycle analyses identified sea mouse coelomocytes as proliferating cells and revealed that spiny crab hemocytes and sea urchin coelomocytes complete their division in the hemolymph and coelom, respectively. The genome sizes of sea mouse and spiny crab are reported for the first time. The diploid DNA content (2C) in sea mouse A. aculeate was 1.24 pg, spiny crab M. crispata 7.76 pg, red starfish E. sepositus 1.52 pg and sea urchin P. lividus 1.08 pg. The mean diploid DNA content in tunicate P. mammillata was 0.11 pg with a high interindividual variability (45%). The presented results provide a useful database for future studies in the field of invertebrate physiology, ecotoxicology, biodiversity, species conservation and phylogeny.

Keywords: cell cycle; coelomocytes; DNA content; genome size; hemocytes; marine invertebrates

  • [1] Bachmann K. & Rheinsmith E.L. 1973. Nuclear DNA amounts in Pacific Crustacea. Chromosoma 43: 225–236. http://dx.doi.org/10.1007/BF00294271CrossrefGoogle Scholar

  • [2] Bennett M.D. 1987. Variation in genomic form in plants and its ecological implications. New Phytol. 106: 177–200. Google Scholar

  • [3] Bihari N. & Fafanđel M. 2004. Interspecies differences in DNA single strand breaks caused by benzo(a)pyrene and marine environment. Mutat. Res. 552: 209–217. Google Scholar

  • [4] Bihari N., Mičić M., Batel R. & Zahn R.K. 2003. Flow cytometric detection of DNA cell cycle alterations of hemocyte of mussels (Mytilus galloprovincialis) off the Adriatic coast, Croatia. Aquat. Toxicol. 64: 121–129. http://dx.doi.org/10.1016/S0166-445X(03)00040-7CrossrefGoogle Scholar

  • [5] Bossche J.P. & Jangoux M. 1976. Epithelial origin of starfish coelomocytes. Nature 261: 227–228. http://dx.doi.org/10.1038/261227a0CrossrefGoogle Scholar

  • [6] Cavalier-Smith T. 1985. The evolution of genome size. John Wiley and Sons, New York. Google Scholar

  • [7] Chia F.S. & Xing J. 1996. Echinoderm coelomocytes. Zool. Stud. 35: 231–254. Google Scholar

  • [8] Conner W.G., Hinegardner R. & Bachamann K. 1972. Nuclear DNA amounts in polychaete annelides. Experientia 28: 1502–1504. http://dx.doi.org/10.1007/BF01957880CrossrefGoogle Scholar

  • [9] Cossarizza A., Pinti M., Troiano L. & Cooper E.L. 2005. Flow cytometry as a tool for analysing invertebrate cells. Invertebr. Surv. J. 2: 32–40. Google Scholar

  • [10] Coteur G., DeBecker G., Warnau M., Jangoux M. & Dubois P. 2002. Differentiation of immune cells challenged by bacteria in the common Europian starfish, Asterias rubens (Echinodermata). Eur. J. Cell Biol. 81: 413–418. http://dx.doi.org/10.1078/0171-9335-00254CrossrefGoogle Scholar

  • [11] Elston R.A., Drum A.S. & Allen S.K. Jr 1990. Progressive development of circulating polyploid cells in Mytilus with haemic neoplasia. Dis. Aquat. Org. 8: 51–59. http://dx.doi.org/10.3354/dao008051CrossrefGoogle Scholar

  • [12] Factor J.R. (ed.) 1995. Biology of the Lobster: Homarus americanus. Academic Press, San Diego. Google Scholar

  • [13] Gambi M.C., Ramella L., Sella G., Protto P. & Aldieri E. 1997. Variation in genome size of benthic polychaetes: systematic and ecological relationships. J. Mar. Biol. Ass. U.K. 77: 1045–1057. http://dx.doi.org/10.1017/S0025315400038613CrossrefGoogle Scholar

  • [14] Gold J.R. & Price H.J. 1987. Genome size variation in North American minnows (Cyprinidae) I. Distribution of the variation in five species. Heredity 54: 197–305. Google Scholar

  • [15] Greenberg S.S. 1989. Immunity and Survival. Human Sciences Press, New York. Google Scholar

  • [16] Gregory T.R. 2008. Animal Genome Size Database. http://www.genomesize.com/. Google Scholar

  • [17] Hinegardner R. 1974. Cellular DNA content of the Echinodermata. Comp. Biochem. Physiol. 49B: 219–226. Google Scholar

  • [18] Holland N.D., Phillips J.H. & Giese AC 1965. An autographic investigation of coelomocyte production in the purple sea urchin (Strongylocentrotus purpuratus). Biol. Bull. 128: 259–270. http://dx.doi.org/10.2307/1539554CrossrefGoogle Scholar

  • [19] Homa J., Bzowska M., Klimek M. & Plytycz B. 2008. Flow cytometric quantification of proliferating coelomocytes non-invasively retrieved from earthworm Dendrobaena veneta. Develop. Comp. Immunol. 32: 9–14. Web of ScienceGoogle Scholar

  • [20] Jeffery W.R. 2002. Ascidian gene-expression profiles. Genome Biol. 3: 1030.1–1030.4. http://dx.doi.org/10.1186/gb-2002-3-10-reviews1030CrossrefGoogle Scholar

  • [21] Matranga V., Toia G., Bonaventura R. & Müller W.E.G. 2000. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones 5: 113–120. http://dx.doi.org/10.1379/1466-1268(2000)005<0113:CABRTE>2.0.CO;2CrossrefGoogle Scholar

  • [22] Nardi J.B., Pilas B., Ujhelyi E., Garsha K. & Kanost M.R. 2003. Hematopoietic organs of Manduca sexta and hemocyte lineages. Dev. Genes. Evol. 213: 477–491. http://dx.doi.org/10.1007/s00427-003-0352-6CrossrefGoogle Scholar

  • [23] Radford J.L., Hutchinson A.E., Burandt M. & Raftos D.A. 2000. Effects of metal-based environmental pollutants on tunicate hemocytes. J. Invertebr. Pathol. 76: 242–248. http://dx.doi.org/10.1006/jipa.2000.4979CrossrefGoogle Scholar

  • [24] Rheinsmith E.L., Hinegardner R. & Bachmann K. 1974. Nuclear DNA amounts in Crustacea. Comp. Biochem. Physiol. 48B: 343–348. Google Scholar

  • [25] Rodríguez-Juíz A.M., Torrado M. & Méndez J. 1996. Genomesize variation in bivalve molluscs determined by flow cytometry. Mar. Biol. 126: 489–497. http://dx.doi.org/10.1007/BF00354631CrossrefGoogle Scholar

  • [26] Schreiber A., Stürenberg F. & Storch V. 1994. DNA content in blood cells of Halicryptus spinulosus, a species of the phylum Priapulida. Naturwissenschaften 80: 455–456. http://dx.doi.org/10.1007/BF01136648CrossrefGoogle Scholar

  • [27] Sessions S.K. & Larson A. 1987. Developmental correlates of genome size in plethodontid salamanders and their implications for genome size. Evolution 41: 1239–1251. http://dx.doi.org/10.2307/2409090CrossrefGoogle Scholar

  • [28] Smith V.J. 1981. The echinoderms, pp. 513–562. In: Ratcliffe N.A. & Rowley A.F. (eds), Invertebrate Blood Cells, Academic Press, London. Google Scholar

  • [29] Tiersch T.R. & Wachtel S.S. 1993. Sources of error in screening by flow cytometry for the effects of environmental mutagens. Environ. Toxicol. Chem. 12: 37–42. http://dx.doi.org/10.1897/1552-8618(1993)12[37:SOEISB]2.0.CO;2CrossrefGoogle Scholar

  • [30] Vaughn J.C. 1975. DNA reassociation kinetics and chromosome structure in the crabs Cancer borealis and Libinia emarginata. Chromosoma 50: 243–257. http://dx.doi.org/10.1007/BF00283469CrossrefGoogle Scholar

  • [31] White M.J.D. 1961. The Chromosomes. John Wiley and Sons, New York. Google Scholar

About the article

Published Online: 2008-09-11

Published in Print: 2008-10-01


Citation Information: Biologia, Volume 63, Issue 5, Pages 730–736, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0127-7.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tom Levy, Ohad Rosen, Rivka Manor, Shahar Dotan, Dudu Azulay, Anna Abramov, Menachem Y. Sklarz, Vered Chalifa-Caspi, Kobi Baruch, Assaf Shechter, and Amir Sagi
Scientific Reports, 2019, Volume 9, Number 1
[2]
Linlin Shi, Shaokui Yi, and Yanhe Li
Molecular Biology Reports, 2018
[3]
Lei Liu, Zhaoxia Cui, Chengwen Song, Yuan Liu, Min Hui, and Chunlin Wang
Acta Oceanologica Sinica, 2016, Volume 35, Number 6, Page 7
[4]
M. W. Hart and R. K. Grosberg
Proceedings of the National Academy of Sciences, 2009, Volume 106, Number 47, Page 19906

Comments (0)

Please log in or register to comment.
Log in