Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 5

Issues

Characterization of a xylanase from a thermophilic strain of Anoxybacillus pushchinoensis A8

Murat Kacagan / Sabriye Canakci / Cemal Sandalli
  • Microbiology & Molecular Biology Research Laboratory, Department of Biology, Faculty of Arts & Sciences, Rize University, 53100, Rize, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kadriye Inan / Dilsat Colak / Ali Belduz
Published Online: 2008-09-11 | DOI: https://doi.org/10.2478/s11756-008-0134-8

Abstract

A facultatively anaerobic, thermophilic, xylanolytic bacterium was isolated from a sample collected from the Diyadin Hot Springs, Turkey. According to morphological, biochemical and molecular identification, this new strain was suggested to be representative of the Anoxybacillus pushchinoensis and it was designated as Anoxybacillus pushchinoensis strain A8. It exhibited 97% similarity to 16S rRNA gene sequence of A. pushchinoensis and 77% DNA homology by DNA-DNA hybridization studies. Q-sepharose and CM-sepharose chromatography was used to purify an extracellular xylanase to >90% purity from this species. The enzyme had a molecular mass of approximately 83 kDa. The enzyme showed optimum activity at pH 6.5 and it was 96% stable over a broad pH range of 6.5–11 for 24 hours. The enzyme had optimum activity at 55°C and it was 100% stable at temperature between 50–60°C up to 24 hours. Kinetic characterization of the enzyme was performed at temperature optima (55°C) and Vmax and K m were found to be 59.88 U/mg protein and 0.909 mg/mL, respectively. Oat spelt xylan but not xylooligosaccharides was degraded by the enzyme and xylose was the only product detected from oat xylan degradation. This suggested that the enzyme was an exo-acting xylanase.

Keywords: Anoxybacillus pushchinoensis; moderately thermophilic; exoxylanase; thermostable xylanase

  • [1] Ahmad S., Scopes R.K., Rees G. & Patel B.K.C. 2000. Saccharococcus caldoxylolyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int. J. Syst. Evol. Microbiol. 50: 517–523. CrossrefGoogle Scholar

  • [2] Becker P., Abu-Reesh I. & Markossian S. 1997. Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl. Microbiol. Biotechnol. 48: 184–190. http://dx.doi.org/10.1007/s002530051036CrossrefGoogle Scholar

  • [3] Beffa T., Blanc M., Lyon P.F., Vogt G., Marchiani M., Fischer J.L. & Aragno M. 1996. Isolation of Thermus strains from hot composts (60 to 80°C). Appl. Environ. Microbiol. 62: 1723–1727. Google Scholar

  • [4] Beg O.K., Bhushan B., Kapoor M. & Hoondal G.S. 2000. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J. Ind. Microbiol. Biotechnol. 24: 396–402. http://dx.doi.org/10.1038/sj.jim.7000010CrossrefGoogle Scholar

  • [5] Belduz A.O., Dulger S. & Demirbag Z. 2003. Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int. J. Syst. Evol. Microbiol. 53: 1315–1320. http://dx.doi.org/10.1099/ijs.0.02473-0CrossrefGoogle Scholar

  • [6] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Wheeler D.L. 2007. GenBank. Nucleic Acids Res. 35 (Database Issue): D21–D25. http://dx.doi.org/10.1093/nar/gkl986CrossrefGoogle Scholar

  • [7] Bergquist P.L. & Morgan H.W. 1992. The molecular genetics and biotechnological application of enzyme from extremely thermophilic eubacteria, pp. 44–75. In: Herbert R.A. & Sharp R.J. (eds), Molecular Biology and Biotechnology of Extremophiles, Chapman & Hall, New York. Google Scholar

  • [8] Blanco A., Diaz P., Zueco J., Parascandola P. & Pastor F.I.J.A. 1999. A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology 145: 2163–2170. http://dx.doi.org/10.1099/13500872-145-8-2163CrossrefGoogle Scholar

  • [9] Brosius J., Palmer M.L., Kennedy P.J. & Noller H.F. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801–4805. http://dx.doi.org/10.1073/pnas.75.10.4801CrossrefGoogle Scholar

  • [10] Charnock S.J., Bolam D.N., Turkenburg J.P., Gilbert H.J., Ferreira L.M.A., Davies G.J. & Fontes C.M.G.A. 2000. The X6 “thermostabilizing” domains of xylanases are carbohydratebinding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39: 5013–5021. http://dx.doi.org/10.1021/bi992821qCrossrefGoogle Scholar

  • [11] Coutinho P.M. & Henrissat B. 1999b. The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach, pp. 15–23. In: Genetics, Biochemistry and Ecology of Cellulose Degradation (Ohmiya K., Hayashi K., Sakka K., Kobayashi Y., Karita S. & Kimura T., eds), Uni Publishers Company, Tokyo. Google Scholar

  • [12] De Ley J., Cattoir H. & Reynaerts A. 1970. The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12: 133–142. http://dx.doi.org/10.1111/j.1432-1033.1970.tb00830.xCrossrefGoogle Scholar

  • [13] Dulger S., Demirbag Z. & Belduz A.O. 2004. Anoxybacillus ayderensi ssp. nov. and Anoxybacillus kestanbolensis sp. nov. Int. J. Syst. Evol. Microbiol. 54: 1499–1503. http://dx.doi.org/10.1099/ijs.0.02863-0CrossrefGoogle Scholar

  • [14] Dupont C., Roberge M., Shareck F., Morosoli R. & Kluepfel D. 1998. Substratebinding domains of glycanases from Streptomyces lividans: characterization of a new family of xylanbinding domains. Biochem. J. 330: 41–45. Google Scholar

  • [15] Escara J.F. & Hutton J.R. 1980. Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19: 1315–1327. http://dx.doi.org/10.1002/bip.1980.360190708CrossrefGoogle Scholar

  • [16] Fernandes A.C., Fontes C.M.G.A., Gilbert H.J., Hazlewood G.P. & Fernandes T.H. 1999. Homologous xylanases from Clostridium thermocellum: evidence for bifunctional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem. J. 342: 105–110. http://dx.doi.org/10.1042/0264-6021:3420105CrossrefGoogle Scholar

  • [17] Gasparic A., Martin J., Daniel A.S. & Flint H.J. 1995. A xylan hydrolase gene cluster in Prevotella ruminicola B(1)4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and β-(1,4)-xylosidase activities. Appl. Environ. Microbiol. 61: 2958–2964. Google Scholar

  • [18] Gessesse A. 1998. Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64: 3533–3535. Google Scholar

  • [19] Gessesse A. & Gashe B.A. 1997. Production of alkaline xylanases by an alkaliphilic Bacillus sp. isolated from na alkaline soda lake. J. Appl. Microbiol. 83: 402–406. http://dx.doi.org/10.1046/j.1365-2672.1997.00242.xCrossrefGoogle Scholar

  • [20] Huss V.A.R., Festl H. & Schleifer K.H. 1983. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4: 184–192. CrossrefGoogle Scholar

  • [21] Johnson J.L. 1985. Determination of DNA base composition. Methods Microbiol. 18: 1–29. CrossrefGoogle Scholar

  • [22] Kalogeris E., Christakopoulos P., Kekos D. & Macris B.J. 1998. Studies on the solid-state production of thermostable endoxylanases from Thermoascus aurantiacus: characterization of two isozymes. J. Biotechnol. 6: 155–163. http://dx.doi.org/10.1016/S0168-1656(97)00186-7CrossrefGoogle Scholar

  • [23] Kambourova M., Mandeva R., Fiume I., Maurelli L., Rossi M. & Morana A. 2006. Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the β-xylosidase/α-arabinosidase from Sulfolobus solfataricus Oα. J. Appl. Microbiol. 102: 1586–1593. http://dx.doi.org/10.1111/j.1365-2672.2006.03197.xCrossrefWeb of ScienceGoogle Scholar

  • [24] Khasin A., Alchanati I. & Shoham Y. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725–1730. Google Scholar

  • [25] Kubata B.K., Suzuki T., Horitsu H., Kawai K. & Takamizawa K. 1994. Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produces exclusively xylobiose from xylan. Appl. Environ. Microbiol. 60: 531–535. Google Scholar

  • [26] Kubata B.K., Takamizawa K., Kawai K., Suzuki T. & Horitsu H. 1995. Xylanase IV, an exoxylanase of Aeromonas caviae ME-1 which produces xylotetraose as the only low-molecular-weight oligosaccharide from xylan. Appl. Environ. Microbiol. 61: 1666–1668. Google Scholar

  • [27] Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. http://dx.doi.org/10.1038/227680a0CrossrefGoogle Scholar

  • [28] Lee D., Koh Y.S., Kim K.J., Kim B.C., Choi H.J., Kim D.S., Suhartono M.T. & Pyun Y.R. 1999. Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 179: 393–400. http://dx.doi.org/10.1111/j.1574-6968.1999.tb08754.xCrossrefGoogle Scholar

  • [29] Lineweawer H. & Burk D. 1934. The determination of enzyme dissociation constant. J. Amer. Chem. Soc. 56: 658–661. http://dx.doi.org/10.1021/ja01318a036CrossrefGoogle Scholar

  • [30] Mandel M. & Marmur J. 1968. Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol. 12: 195–206. http://dx.doi.org/10.1016/0076-6879(67)12133-2CrossrefGoogle Scholar

  • [31] Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426–428. http://dx.doi.org/10.1021/ac60147a030CrossrefGoogle Scholar

  • [32] Pikuta E., Cleland D. & Tang J. 2003. Aerobic growth of Anoxybacillus pushchinensis K1T: emended descriptions of A. pushchinensis and the genus Anoxybacillus. Int. J. Syst. Evol. Microbiol. 53: 1561–1562. http://dx.doi.org/10.1099/ijs.0.02643-0CrossrefGoogle Scholar

  • [33] Pikuta E., Lysenko A., Chuvilskaya N., Mendrock U., Hippe H., Suzina N., Nikitin D., Osipov G. & Laurinavichus K. 2000. Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int. J. Syst. Evol. Microbiol. 50: 2109–2117. CrossrefGoogle Scholar

  • [34] Ratanakhanokchai K., Kyu K.L. & Tanticharoen M. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. App. Environ. Microbiol. 65: 694–697. Google Scholar

  • [35] Sneath P.H.A. 1986. Endospore-forming gram-positive rods and cocci, pp. 1104–1207. In Sneath P.H.A., Mair N.S., Sharpe M.S. & Holt J.G. (eds), Bergey’s Manual of Systematic Bacteriology, Vol. 2, Williams & Wilkins, Baltimore. Google Scholar

  • [36] Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19–23. Google Scholar

  • [37] Sonnleitner B. & Fiechter A. 1983. Advantages of using thermophiles in biotechnological processes: expectations and reality. Trends Biotechnol. 1: 74–80. http://dx.doi.org/10.1016/0167-7799(83)90056-2CrossrefGoogle Scholar

  • [38] Stackebrandt E. & Goebel B.M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Sys. Bacteriol. 44: 846–849. http://dx.doi.org/10.1099/00207713-44-4-846CrossrefGoogle Scholar

  • [39] Sunna A., Gibbs M.D. & Bergquist P.L. 2000. The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain. Biochem. J. 346: 583–586. http://dx.doi.org/10.1042/0264-6021:3460583CrossrefGoogle Scholar

  • [40] Sunna A., Gibbs M.D. & Bergquist P.L. 2001. Identification of novel β-mannan-and β-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. Biochem. J. 356: 791–798. http://dx.doi.org/10.1042/0264-6021:3560791CrossrefGoogle Scholar

  • [41] Teather R.M. & Wood P.J. 1982. Use of Congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777–780. Google Scholar

  • [42] Touzel J.P., O’Donohue M., Debeire P., Samain E. & Breton C. 2000. Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int. J. Syst. Evol. Microbiol. 50: 315–320. CrossrefGoogle Scholar

  • [43] Vandamme P., Pot B., Gillis M., De Vos P., Kersters K. & Swings J. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407–438. Google Scholar

  • [44] Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler P., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., Stackebrandt E., Starr M.P. & Truper H.G. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Sys. Bacteriol. 37: 463–464. CrossrefGoogle Scholar

About the article

Published Online: 2008-09-11

Published in Print: 2008-10-01


Citation Information: Biologia, Volume 63, Issue 5, Pages 599–606, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0134-8.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dilsat Nigar Colak, Kadriye INAN BEKTAS, Muslum TOKGOZ, Sabriye CANAKCI, and Ali Osman BELDUZ
Sakarya University Journal of Science, 2018, Page 1
[2]
Gulsah Adiguzel, Ozlem Faiz, Melda Sisecioglu, Bilge Sari, Ozkan Baltaci, Sumeyya Akbulut, Berna Genc, and Ahmet Adiguzel
International Journal of Biological Macromolecules, 2019, Volume 129, Page 571
[3]
Loredana Marcolongo, Francesco La Cara, Giovanni del Monaco, Susana M. Paixão, Luís Alves, Isabel Paula Marques, and Elena Ionata
International Journal of Biological Macromolecules, 2018
[4]
Bilge Sari, Ozlem Faiz, Berna Genc, Melda Sisecioglu, Ahmet Adiguzel, and Gulsah Adiguzel
International Journal of Biological Macromolecules, 2018
[5]
Punam Yadav, Jyoti Maharjan, Suresh Korpole, Gandham S. Prasad, Girish Sahni, Tribikram Bhattarai, and Lakshmaiah Sreerama
Frontiers in Bioengineering and Biotechnology, 2018, Volume 6
[6]
Kian Mau Goh, Ummirul Mukminin Kahar, Yen Yen Chai, Chun Shiong Chong, Kian Piaw Chai, Velayudhan Ranjani, Rosli Md. Illias, and Kok-Gan Chan
Applied Microbiology and Biotechnology, 2013, Volume 97, Number 4, Page 1475
[7]
Kadriye Inan, Yusuf Bektas, Sabriye Canakci, and Ali Osman Belduz
The Journal of Microbiology, 2011, Volume 49, Number 5, Page 782

Comments (0)

Please log in or register to comment.
Log in