Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 6

Issues

A new male-specific gene “OTOKOGI” in Pleodorina starrii (Volvocaceae, Chlorophyta) unveils the origin of male and female

Hisayoshi Nozaki
  • Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-12-04 | DOI: https://doi.org/10.2478/s11756-008-0097-9

Abstract

Eukaryotic sex was initially isogametic and it is assumed that anisogamy/oogamy evolved independently in many lineages including animals, land plants and volvocine green algae. The exact evolutionary mechanisms that were responsible for the evolution of oogamy from isogamy were poorly understood until Nozaki et al. (2006) introduced the use of molecular-genetic data in elucidating the evolutionary origin of oogamy from isogamy in the colonial volvocacean Pleodorina starrii. In the close relative Chlamydomonas reinhardtii, sexual reproduction is isogametic with mating-types plus and minus. Mating type minus represents a “dominant sex” because the MID (“minus-dominance”) gene of C. reinhardtii is both necessary and sufficient to cause the cells to differentiate as isogametes of the minus mating type. No sex-specific genes had been identified in the volvocine green algae until Nozaki et al. (2006a) successfully cloned the MID gene of P. starrii. This “OTOKOGI” (PlestMID) gene is present only in the male genome, and encodes a protein localized abundantly in the nuclei of mature sperm. Thus, P. starrii maleness evolved from the dominant sex (mating type minus) of its isogamous ancestor. This breakthrough provides an opportunity to address various extremely interesting questions regarding the evolution of oogamy and the male-female dichotomy.

Keywords: evolution; maleness; mating type; oogamy; sex; Volvocales

  • [1] Adams C.R., Stamer K.A., Miller J.K., McNally J.G., Kirk M.M. & Kirk D.L. 1990. Patterns of organellar and nuclear inheritance among progeny of two geographically isolated strains of Volvox carteri. Curr. Genet. 18: 141–153. http://dx.doi.org/10.1007/BF00312602CrossrefGoogle Scholar

  • [2] Boynton J.E., Harris E.H., Burkhart B.D., Lamerson P.M. & Gillham N.W. 1987. Transmission of mitochondrial and chloroplast genomes in crosses of Chlamydomonas. Proc. Natl. Acad. Sci. USA 84: 2391–2395. http://dx.doi.org/10.1073/pnas.84.8.2391CrossrefGoogle Scholar

  • [3] Coleman A.W. 1975. Long-term maintenance of fertile algal clones: experience with Pandorina (Chlorophyceae). J. Phycol. 11: 282–286. Google Scholar

  • [4] Ferris P.J., Armbrust E.V. & Goodenough U.W. 2002. Genetic structure of the mating-type locus of Chlamydomonas reinhardtii. Genetics 160: 181–200. Google Scholar

  • [5] Ferris P.J. & Goodenough, U.W. 1994. The mating-type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences. Cell 76: 1135–1145. http://dx.doi.org/10.1016/0092-8674(94)90389-1CrossrefGoogle Scholar

  • [6] Ferris P.J. & Goodenough U.W. 1997. Mating type in Chlamydomonas is specified by Mid, the minus-dominance gene. Genetics 146: 859–869. Google Scholar

  • [7] Ferris P.J., Pavlovic G., Fabry S. & Goodenough U.W. 1997. Rapid evolution of sex-related genes in Chlamydomonas. Proc. Natl. Acad. Sci. USA 94: 8634–8639. http://dx.doi.org/10.1073/pnas.94.16.8634CrossrefGoogle Scholar

  • [8] Karol K.G., McCourt R.M., Cimino M.T. & Delwiche C.F. 2001. The closest living relatives of land plants. Science 294: 2351–2353. http://dx.doi.org/10.1126/science.1065156CrossrefGoogle Scholar

  • [9] Kirk D.L. 2006. A twelve-step program for evolving multicellularity and a division of labor. BioEssays 27: 299–310. http://dx.doi.org/10.1002/bies.20197CrossrefGoogle Scholar

  • [10] Kuroiwa H., Nozaki H. & Kuroiwa T. 1993. Preferential digestion of chroroplast nuclei in sperms before and during fertilization in Volvox carteri. Cytologia 58: 281–291. Google Scholar

  • [11] Kuroiwa T., Kawano S., Nishibayashi S. & Sato C. 1982. Epifluorescent microscopic evidence for maternal inheritance of chloroplast DNA. Nature 298: 481–483. http://dx.doi.org/10.1038/298481a0CrossrefGoogle Scholar

  • [12] Lahn B.T. & Page D.C. 1999. Four evolutionary strata on the human X chromosome. Science 286: 964–967. http://dx.doi.org/10.1126/science.286.5441.964CrossrefGoogle Scholar

  • [13] Mori F., Erata M. & Watanabe M.M. 2002. Cryopreservation of cyanobacteria and green algae in the NIES-Collection. Microbiol. Cult. Coll. 18: 45–55. Google Scholar

  • [14] Nozaki H. 1996. Morphology and evolution of sexual reproduction in the Volvocaceae. (Chlorophyta). J. Plant Res. 109: 353–361. http://dx.doi.org/10.1007/BF02344484CrossrefGoogle Scholar

  • [15] Nozaki H. 2003. Origin and evolution of the genera Pleodorina and Volvox (Volvocales). Biologia 58/4: 425–431. Google Scholar

  • [16] Nozaki H. 2008. Zygote germination in Pleodorina starrii (Volvocaceae, Chlorophyta). Biologia 63: DOI: 10.2478/s11756-008-0098-8. Web of ScienceCrossrefGoogle Scholar

  • [17] Nozaki H. & Ito M. 1994. Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from cladistic analysis based on morphological data. J. Phycol. 30: 353–365. http://dx.doi.org/10.1111/j.0022-3646.1994.00353.xCrossrefGoogle Scholar

  • [18] Nozaki H., Misawa K., Kajita T., Kato M., Nohara S. & Watanabe M.M. 2000. Origin and evolution of the colonial Volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences. Mol. Phylog. Evol. 17: 256–268. http://dx.doi.org/10.1006/mpev.2000.0831CrossrefGoogle Scholar

  • [19] Nozaki H., Mori T., Misumi O., Matsunaga S. & Kuroiwa T. 2006a. Males evolved from the dominant isogametic mating type. Curr. Biol. 16: R1018–R1020. http://dx.doi.org/10.1016/j.cub.2006.11.019CrossrefGoogle Scholar

  • [20] Nozaki H., Ott F.D. & Coleman A.W. 2006b. Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvoceae, Chlorophyceae). J. Phycol. 42: 1072–1080. http://dx.doi.org/10.1111/j.1529-8817.2006.00255.xCrossrefGoogle Scholar

  • [21] Rokas A., Krüger D. & Carroll S.B. 2005. Animal evolution and the molecular signature of radiations compressed in time. Science 310: 1933–1938. http://dx.doi.org/10.1126/science.1116759CrossrefGoogle Scholar

  • [22] Schauser L., Wieloch W. & Stougaard J. 2005. Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J. Mol. Evol. 60: 229–237. http://dx.doi.org/10.1007/s00239-004-0144-2CrossrefGoogle Scholar

About the article

Published Online: 2008-12-04

Published in Print: 2008-12-01


Citation Information: Biologia, Volume 63, Issue 6, Pages 772–777, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0097-9.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Takashi Hamaji, Patrick J. Ferris, Ichiro Nishii, Yoshiki Nishimura, Hisayoshi Nozaki, and Senjie Lin
PLoS ONE, 2013, Volume 8, Number 5, Page e64385
[2]
Nicolas Perrin
Evolution, 2012, Volume 66, Number 4, Page 947
[3]
Takashi Hamaji, Patrick J. Ferris, Ichiro Nishii, and Hisayoshi Nozaki
Journal of Phycology, 2009, Volume 45, Number 6, Page 1310
[4]
Armin Hallmann
Sexual Plant Reproduction, 2011, Volume 24, Number 2, Page 97

Comments (0)

Please log in or register to comment.
Log in