Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 4, 2008

A new male-specific gene “OTOKOGI” in Pleodorina starrii (Volvocaceae, Chlorophyta) unveils the origin of male and female

  • Hisayoshi Nozaki EMAIL logo
From the journal Biologia

Abstract

Eukaryotic sex was initially isogametic and it is assumed that anisogamy/oogamy evolved independently in many lineages including animals, land plants and volvocine green algae. The exact evolutionary mechanisms that were responsible for the evolution of oogamy from isogamy were poorly understood until Nozaki et al. (2006) introduced the use of molecular-genetic data in elucidating the evolutionary origin of oogamy from isogamy in the colonial volvocacean Pleodorina starrii. In the close relative Chlamydomonas reinhardtii, sexual reproduction is isogametic with mating-types plus and minus. Mating type minus represents a “dominant sex” because the MID (“minus-dominance”) gene of C. reinhardtii is both necessary and sufficient to cause the cells to differentiate as isogametes of the minus mating type. No sex-specific genes had been identified in the volvocine green algae until Nozaki et al. (2006a) successfully cloned the MID gene of P. starrii. This “OTOKOGI” (PlestMID) gene is present only in the male genome, and encodes a protein localized abundantly in the nuclei of mature sperm. Thus, P. starrii maleness evolved from the dominant sex (mating type minus) of its isogamous ancestor. This breakthrough provides an opportunity to address various extremely interesting questions regarding the evolution of oogamy and the male-female dichotomy.

[1] Adams C.R., Stamer K.A., Miller J.K., McNally J.G., Kirk M.M. & Kirk D.L. 1990. Patterns of organellar and nuclear inheritance among progeny of two geographically isolated strains of Volvox carteri. Curr. Genet. 18: 141–153. http://dx.doi.org/10.1007/BF0031260210.1007/BF00312602Search in Google Scholar

[2] Boynton J.E., Harris E.H., Burkhart B.D., Lamerson P.M. & Gillham N.W. 1987. Transmission of mitochondrial and chloroplast genomes in crosses of Chlamydomonas. Proc. Natl. Acad. Sci. USA 84: 2391–2395. http://dx.doi.org/10.1073/pnas.84.8.239110.1073/pnas.84.8.2391Search in Google Scholar

[3] Coleman A.W. 1975. Long-term maintenance of fertile algal clones: experience with Pandorina (Chlorophyceae). J. Phycol. 11: 282–286. 10.1111/j.0022-3646.1975.00282.xSearch in Google Scholar

[4] Ferris P.J., Armbrust E.V. & Goodenough U.W. 2002. Genetic structure of the mating-type locus of Chlamydomonas reinhardtii. Genetics 160: 181–200. 10.1093/genetics/160.1.181Search in Google Scholar

[5] Ferris P.J. & Goodenough, U.W. 1994. The mating-type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences. Cell 76: 1135–1145. http://dx.doi.org/10.1016/0092-8674(94)90389-110.1016/0092-8674(94)90389-1Search in Google Scholar

[6] Ferris P.J. & Goodenough U.W. 1997. Mating type in Chlamydomonas is specified by Mid, the minus-dominance gene. Genetics 146: 859–869. Search in Google Scholar

[7] Ferris P.J., Pavlovic G., Fabry S. & Goodenough U.W. 1997. Rapid evolution of sex-related genes in Chlamydomonas. Proc. Natl. Acad. Sci. USA 94: 8634–8639. http://dx.doi.org/10.1073/pnas.94.16.863410.1073/pnas.94.16.8634Search in Google Scholar PubMed PubMed Central

[8] Karol K.G., McCourt R.M., Cimino M.T. & Delwiche C.F. 2001. The closest living relatives of land plants. Science 294: 2351–2353. http://dx.doi.org/10.1126/science.106515610.1126/science.1065156Search in Google Scholar PubMed

[9] Kirk D.L. 2006. A twelve-step program for evolving multicellularity and a division of labor. BioEssays 27: 299–310. http://dx.doi.org/10.1002/bies.2019710.1002/bies.20197Search in Google Scholar PubMed

[10] Kuroiwa H., Nozaki H. & Kuroiwa T. 1993. Preferential digestion of chroroplast nuclei in sperms before and during fertilization in Volvox carteri. Cytologia 58: 281–291. 10.1508/cytologia.58.281Search in Google Scholar

[11] Kuroiwa T., Kawano S., Nishibayashi S. & Sato C. 1982. Epifluorescent microscopic evidence for maternal inheritance of chloroplast DNA. Nature 298: 481–483. http://dx.doi.org/10.1038/298481a010.1038/298481a0Search in Google Scholar PubMed

[12] Lahn B.T. & Page D.C. 1999. Four evolutionary strata on the human X chromosome. Science 286: 964–967. http://dx.doi.org/10.1126/science.286.5441.96410.1126/science.286.5441.964Search in Google Scholar PubMed

[13] Mori F., Erata M. & Watanabe M.M. 2002. Cryopreservation of cyanobacteria and green algae in the NIES-Collection. Microbiol. Cult. Coll. 18: 45–55. Search in Google Scholar

[14] Nozaki H. 1996. Morphology and evolution of sexual reproduction in the Volvocaceae. (Chlorophyta). J. Plant Res. 109: 353–361. http://dx.doi.org/10.1007/BF0234448410.1007/BF02344484Search in Google Scholar

[15] Nozaki H. 2003. Origin and evolution of the genera Pleodorina and Volvox (Volvocales). Biologia 58/4: 425–431. Search in Google Scholar

[16] Nozaki H. 2008. Zygote germination in Pleodorina starrii (Volvocaceae, Chlorophyta). Biologia 63: DOI: 10.2478/s11756-008-0098-8. 10.2478/s11756-008-0098-8Search in Google Scholar

[17] Nozaki H. & Ito M. 1994. Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from cladistic analysis based on morphological data. J. Phycol. 30: 353–365. http://dx.doi.org/10.1111/j.0022-3646.1994.00353.x10.1111/j.0022-3646.1994.00353.xSearch in Google Scholar

[18] Nozaki H., Misawa K., Kajita T., Kato M., Nohara S. & Watanabe M.M. 2000. Origin and evolution of the colonial Volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences. Mol. Phylog. Evol. 17: 256–268. http://dx.doi.org/10.1006/mpev.2000.083110.1006/mpev.2000.0831Search in Google Scholar PubMed

[19] Nozaki H., Mori T., Misumi O., Matsunaga S. & Kuroiwa T. 2006a. Males evolved from the dominant isogametic mating type. Curr. Biol. 16: R1018–R1020. http://dx.doi.org/10.1016/j.cub.2006.11.01910.1016/j.cub.2006.11.019Search in Google Scholar PubMed

[20] Nozaki H., Ott F.D. & Coleman A.W. 2006b. Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvoceae, Chlorophyceae). J. Phycol. 42: 1072–1080. http://dx.doi.org/10.1111/j.1529-8817.2006.00255.x10.1111/j.1529-8817.2006.00255.xSearch in Google Scholar

[21] Rokas A., Krüger D. & Carroll S.B. 2005. Animal evolution and the molecular signature of radiations compressed in time. Science 310: 1933–1938. http://dx.doi.org/10.1126/science.111675910.1126/science.1116759Search in Google Scholar PubMed

[22] Schauser L., Wieloch W. & Stougaard J. 2005. Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J. Mol. Evol. 60: 229–237. http://dx.doi.org/10.1007/s00239-004-0144-210.1007/s00239-004-0144-2Search in Google Scholar PubMed

Published Online: 2008-12-4
Published in Print: 2008-12-1

© 2008 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-008-0097-9/html
Scroll to top button