Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 63, Issue 6


Algal biofilms on tree bark to monitor airborne pollutants

Katharina Freystein / Mario Salisch / Werner Reisser
Published Online: 2008-12-04 | DOI: https://doi.org/10.2478/s11756-008-0114-z


Algae are used in biomonitoring systems to detect water or soil pollution. So it is conceivable to establish a biomonitoring system for the detection of airborne pollutants (ozone and particulate matter (PM-10)) in urban habitats by algae. Autotrophic biofilms are widely present, cover nearly every exposed surface, especially tree bark and consist of a large variety of species of algae, cyanobacteria and fungi. To explore the diversity of green algae at different air pollution monitoring sites we choose trees with different structures of bark at three locations in and near Leipzig. We compared the measured levels of air pollution with the algal species and communities present. The sites differed in the quality and amount of airborne pollutants, among which we concentrated on ozone and particulate matter (PM-10). The collection sites were Leipzig-Centre, Leipzig-West and a forest area east of Leipzig (Collmberg). Autotrophic biofilms were collected, algae cultures established and taxonomic and morphological studies were carried out with light microscopy. Green algae were present on tree bark at all sites and forty-eight different algal species and cyanobacteria were isolated. Preliminary results suggested a correlation between pollutants and occurrence of some specific algal species and the specific algal assemblages at a given site. It is concluded that this could provide the basis for a biomonitoring system involving aero-terrestrial algae for the detection of airborne pollutants.

Keywords: aero-terrestrial algae; airborne pollution; morphology; ozone; particulate matter; tree bark

  • [1] Adamo P., Crisafulli P., Giordano S., Minganti V., Modenesi P., Monaci F., Pittao E., Tretiach M. & Bargagli R. 2007. Lichen and moss bags as monitoring devices in urban areas. Part II: Trace element content in living and dead biomonitors and comparison with synthetic materials. Environm. Pollution 146: 392–399. http://dx.doi.org/10.1016/j.envpol.2006.03.047CrossrefGoogle Scholar

  • [2] Alga growth inhibition test, OECD 201 Google Scholar

  • [3] Altenburger R., Walter H. & Grote M. 2004. What contributes to the combined effect of a complex mixture? Environ. Sci. & Technol. 38(23): 6353–6362. http://dx.doi.org/10.1021/es049528kCrossrefGoogle Scholar

  • [4] Andreeva V.M. 1973. Novye vidy Chlorella Beijer. (New species of the Chlorella Beijer.). Bot. Z., Leningrad, 58: 1735–1741. Google Scholar

  • [5] Andreeva V.M. 1998. Terrestrial and aerophytic green algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Nauka, St. Petersburg, 352 pp. Google Scholar

  • [6] Bischoff H.W. & Bold H.C. 1963. Some soil algae from Enchanted Rock and related algal species. Phycol. Stud. 4, Univ. Texas Pub. 6318: 1–95. Google Scholar

  • [7] Blett T., Geiser L. & Porter E. 2003. Air pollution-related lichen monitoring in national parks, forests and refuges: guideline for studies intended for regulatory and management purposes, U.S. Department of the Interior & U.S. Department of Agriculture, 26 pp. Google Scholar

  • [8] Brand F. 1925. Analyse der aerophilen Grünalgenanflüge, insbesondere der proto-pleurococcoiden Formen. Arch. Protistenk. 52: 265–354. Google Scholar

  • [9] Edlich F. 1936. Einwirkung von Temperatur und Wasser auf aerophile Algen. Arch. Mikrobiol. 7: 62–109. http://dx.doi.org/10.1007/BF00407395CrossrefGoogle Scholar

  • [10] Ettl H. 1983. Chlorophyta I — Phytomonadina. In: Ettl H., Gerloff J., Heyning H. & Mollenhauer D. (eds), Süßwasserflora von Mitteleuropa 9, G. Fischer Verlag, Jena, 807 pp. Google Scholar

  • [11] Ettl H. & Gärtner G. 1995. Syllabus der Boden-, Luft-und Flechtenalgen. Gustav Fischer Verlag, Stuttgart — Jena — New York, 721 pp. Google Scholar

  • [12] Gärtner G. & Ingolić E. 1989. Ein Beitrag zur Kenntnis von Apatococcus lobatus (Chlorophyta, Chaetophorales, Leptosiroideae). Pl. Syst. Evol. 164: 133–143. http://dx.doi.org/10.1007/BF00940434CrossrefGoogle Scholar

  • [13] Geitler L. 1942. Morphologie, Entwicklungsgeschichte und Systematik neuer bemerkenswerter aerophytischer Algen aus Wien. Flora 136: 1–29. Google Scholar

  • [14] Görs S., Schumann R., Häubner N. & Karsten U. 2007. Fungal and algal biomass on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. Int. Biodeterioration & Biodegradation 60: 50–59 http://dx.doi.org/10.1016/j.ibiod.2006.10.003CrossrefWeb of ScienceGoogle Scholar

  • [15] Gorbushina A.A. 2007: Life on the rocks, Environmental Microbiology 9(7): 1613–1631 http://dx.doi.org/10.1111/j.1462-2920.2007.01301.xCrossrefWeb of ScienceGoogle Scholar

  • [16] Grote M., Schüürmann G. & Altenburger R. 2005. Modeling photoinduced algal toxicity of polycyclic aromatic hydrocarbons. Environ. Sci. & Technol. 39(11): 4141–4149. http://dx.doi.org/10.1021/es048310vCrossrefGoogle Scholar

  • [17] Handa S., Nakano T. & Takeshita S. 1991. Some corticous algae from Shibetu, Hokkaido, Northern Japan. J. Jap. Bot. 66(4): 211–223. Google Scholar

  • [18] Heath R. L. 1994. Possible mechanisms for the inhibition of photosynthesis by ozone. Photosynth. Res 39: 439–451. http://dx.doi.org/10.1007/BF00014597CrossrefGoogle Scholar

  • [19] Hilge C., Petersen K. & Krumbein W.E. 1998. Rolle des bei UV-Strahlung freiwerdenden Ozons bei der Schädigung von Mikroorganismen. Z. Kunsttechnol. & Konservierung, pp. 162–173. Google Scholar

  • [20] Höhn B. 2002. Bodennahes Ozon — Entstehung — Wirkung — Maßnahmen, Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen. Google Scholar

  • [21] DIN 38412 — Teil 33 1991. Bestimmung der nicht giftigen Wirkung von Abwasser gegenüber Grünalgen (Scenedesmus-Chlorophyll-Fluoreszenz-Test) über Verdünnungsstufen. Google Scholar

  • [22] Komárek J. & Fott B. 1983. Das Phytoplankton des Süßwassers (7. Teil — 1. Hälfte), In: Huber-Pestalozzi, G. (ed.) Die Binnengewässer Band XVI, Schweizerbart, Stuttgart, 1044 pp. Google Scholar

  • [23] Lokhorst G.M. & Vroman M. 1974. Taxonomic studies on the genus Ulothrix (Ulotrichaes, Chlorophyceae) II. Acta Bot. Neerl. 23: 369–398. CrossrefGoogle Scholar

  • [24] Loreto F. & Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular Membranes. Plant Physiol. 127: 1781–1787. http://dx.doi.org/10.1104/pp.010497CrossrefGoogle Scholar

  • [25] Pauls K.P. & Thompson J.E. 1980. In vitro simulation of senescence-related membrane damage by ozone-induced lipid peroxidation. Nature 283: 504–506. http://dx.doi.org/10.1038/283504a0CrossrefGoogle Scholar

  • [26] Reisser W. & Houben P. 2001. Different strategies of aeroter-restrical algae in reacting to increased levels of UV-B and ozone. Nova Hedwigia, Beih. 123: 291–296. Google Scholar

  • [27] Rindy F. & Guiry M.D. 2004. Composition and spatial variability of terrestrial algal assemblages occurring at the base of urban walls in Europe. Phycologia 43(3): 225–235. http://dx.doi.org/10.2216/i0031-8884-43-3-225.1CrossrefGoogle Scholar

  • [28] Schmidt G. 1927. Zur Ökologie der Luftalgen, Ber. dtsch. bot. Ges. 45: 518–533. Google Scholar

  • [29] Steiner M. & Schulze-Horn D. 1955. Über die Verbreitung und Expositionsabhängigkeit der Rindenepiphyten im Stadtgebiet von Bonn. Decheniana 108/1: 1–16. Google Scholar

  • [30] Stroh K. 2004. Bodennahes Ozon. Bayrisches Landesamt für Umweltschutz, 7 pp. Google Scholar

  • [31] Yair A. 2001. Effects of Biological Soil Crusts on Water Redistribution in the Negev Desert, Israel: a Case Study in Longitudinal Dunes. Ecol. Stud. 150: 303–314. In: Belnap, J. & Lange, O. L. (eds), Biological soil crusts: structure, function and management. Springer — Verlag, Berlin-Heidelberg. Google Scholar

  • [32] Yamamoto Y., Miura Y., Higuchi M., Kinoshita Y. & Yoshimura I. 1993. Using lichen tissue cultures in modern biology. The Bryologist 96/3: 384–393. http://dx.doi.org/10.2307/3243868CrossrefGoogle Scholar

About the article

Published Online: 2008-12-04

Published in Print: 2008-12-01

Citation Information: Biologia, Volume 63, Issue 6, Pages 866–872, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0114-z.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Karin Glaser, Karen Baumann, Peter Leinweber, Tatiana Mikhailyuk, and Ulf Karsten
Biogeosciences, 2018, Volume 15, Number 13, Page 4181
Lydia Gustavs, Rhena Schumann, Ulf Karsten, Maike Lorenz, and L. Graham
Journal of Phycology, 2016, Volume 52, Number 2, Page 311
M. G. Sophia, V. L. M. Huszar, L. H. S. Silva, C. D. Domingues, J. B. O. Santos, and C. E. M. Bicudo
Brazilian Journal of Botany, 2016, Volume 39, Number 2, Page 741
J. Kwiecinski
Letters in Applied Microbiology, 2015, Volume 61, Number 6, Page 511
Radka Nováková and Jiří Neustupa
Science of The Total Environment, 2015, Volume 508, Page 7
Nivedita Sahu and Anjana Devi Tangutur
Aerobiologia, 2015, Volume 31, Number 1, Page 89
Jana Kulichová, Pavel Škaloud, and Jiří Neustupa
European Journal of Phycology, 2014, Volume 49, Number 3, Page 345
L. Marmor and P. Degtjarenko
Ecological Indicators, 2014, Volume 45, Page 717
Christine Hallmann, Lorena Stannek, Diana Fritzlar, Dorothea Hause-Reitner, Thomas Friedl, and Michael Hoppert
FEMS Microbiology Ecology, 2013, Volume 84, Number 2, Page 355

Comments (0)

Please log in or register to comment.
Log in