Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 6

Issues

A short overview of chlorophyll biosynthesis in algae

Eliška Gálová
  • Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Iveta Šalgovičová
  • Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viktor Demko
  • Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarína Mikulová
  • Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Ševčovičová
  • Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ľudmila Slováková
  • Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Veronika Kyselá
  • Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ján Hudák
  • Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-12-04 | DOI: https://doi.org/10.2478/s11756-008-0147-3

Abstract

Chlorophylls are the most abundant classes of natural pigments and their biosynthesis is therefore a major metabolic activity in the ecosphere. Two pathways exist for chlorophyll biosynthesis, one taking place in darkness and the other requiring continuous light as a precondition. The key process for Chl synthesis is the reduction of protochlorophyllide (Pchlide). This enzymatic reaction is catalysed by two different enzymes — DPOR (dark-operative Pchlide oxidoreductase) or the structurally distinct LPOR (light-dependent Pchlide oxidoreductase). DPOR which consists of three subunits encoded by three plastid genes in eukaryotes was subject of our study. A short overview of our present knowledge of chlorophyll biosynthesis in Chlamydomonas reinhardtii in comparison with other plants is presented.

Keywords: Chlamydomonas reinhardtii; algae; chlorophyll synthesis; protochlorophyllide; LPOR; DPOR

  • [1] Armstrong G.A. 1998. Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J. Photochem. Photobiol. B: Biology 43: 87–100. http://dx.doi.org/10.1016/S1011-1344(98)00063-3CrossrefGoogle Scholar

  • [2] Böddi B., Evertsson I., Ryberg M. & Sundqvist C. 1996. Protochlorophyllide transformation and chlorophyll accumulation in epicotyls of pea (Pisum sativum). Physiol. Plant. 96: 706–713. http://dx.doi.org/10.1111/j.1399-3054.1996.tb00246.xCrossrefGoogle Scholar

  • [3] Boivin R., Richard M., Beauseigle D., Bousquet J. & Bellemare G. 1996. Phylogenetic inferences from chloroplast chlB gene sequences of Nephrolepis exaltata (Filicopsida), Ephedra altissima (Gnetopsida) and diverse land plants. Mol. Phylogenet. Evol. 6: 19–29. http://dx.doi.org/10.1006/mpev.1996.0054CrossrefGoogle Scholar

  • [4] Burke D.H., Raubeson L.A., Alberti M., Hearst J.E., Jordan E.T., Kirch S.A., Valinski A.E.C., Conant D.S. & Stein D.B. 1993. The chlL (frxC) gene: phylogenetic distribution in vascular plants and DNA sequence from Polysrichum acrostichoides (Pteridophyta) and Synechococcus sp. 7002 (Cyanobacteria). Plant Syst. Evol. 187: 89–102. http://dx.doi.org/10.1007/BF00994092CrossrefGoogle Scholar

  • [5] Cahoon A.B. & Timko M.P. 2000. yellow-in-the-dark mutants of Chlamydomonas lack the ChlL subunit of light-independent protochlorophyllide reductase. Plant Cell 12: 559–568. http://dx.doi.org/10.1105/tpc.12.4.559CrossrefGoogle Scholar

  • [6] Cheng Q., Day A., Dowson-Day M., Shen, G.-F. & Dixon R. 2005. The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally sunstitutes for the chlL gene in Chlamydomonas reinhardtii. Biochem. Bioph. Res. Co 329: 966–975. http://dx.doi.org/10.1016/j.bbrc.2005.02.064CrossrefGoogle Scholar

  • [7] Demko V. 2005. Study of genes encoding light-independent protochlorophyllide oxidoreductase in Larix decidua Mill. seedlings. Diploma thesis, Faculty of Natural Sciences, Comenius University, Bratislava, 51 pp. Google Scholar

  • [8] Douglas S.E. 1994. Chloroplast origin and evolution, pp. 91–118. In: Bryant D.A. (eds), The molecular biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands. Google Scholar

  • [9] Durchan M. & Lebedev N.N. 1995. Changes in the near UV fluorescence excitation spectrum during protochlorophyllide photoreduction in etiolated cucumber cotyledons. Photosynthetica 31: 599–611. Google Scholar

  • [10] Franck F., Barthelemy X. & Strzalka K. 1993. Spectroscopic characterization of protochlorophyllide photoreduction in the greening leaf. Photosynthetica 29: 185–194. Google Scholar

  • [11] Fujita Y. 1996. Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell. Physiol. 37: 411–421. CrossrefGoogle Scholar

  • [12] Fujita Y., Takahashi Y., Kohchi T., Ozeki H., Ohyama K. & Matsubara H. 1989. Identification of a novel nifH-like (frxC) protein in chloroplasts of the liverwort Marchantia polymorpha. Plant Mol. Biol. 13: 551–561. http://dx.doi.org/10.1007/BF00027315CrossrefGoogle Scholar

  • [13] Fujita Y., Takashaki Y., Shonai F., Ogura Y. & Matsubara H. 1991. Cloning, nucleotide sequences and differential expression of the nifH and nifH-like (frxC) genes from the filamentous nitrogen-fixing cyanobacterium Plectonema boryanum. Plant Cell. Physiol. 32: 1093–1106. Google Scholar

  • [14] Fujita Y., Takahashi Y., Chuganji M. & Matsubara H. 1992. The nifH-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum. Plant Cell. Physiol. 33: 81–92. Google Scholar

  • [15] Fujita Y. & Bauer C. 2000. Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits. In vitro confirmation of nitrogenase-like features of bacteriochlorophyll biosynthesis enzyme. J. Biol. Chem. 275: 23583–23588. http://dx.doi.org/10.1074/jbc.M002904200CrossrefGoogle Scholar

  • [16] Fujita Y. & Bauer C. 2003. The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark, pp. 109–156. In: Kadish, K. M., Smith, K. M. & Guilard, R. (eds), The Porphyrin Handbook. Elsevier Science, USA. Google Scholar

  • [17] Hallick R. B., Hong L., Drager R. G., Favreau M. R., Monfort A., Orsat B., Spielmann A. & Stutz E. 1993. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 21: 3537–3544. http://dx.doi.org/10.1093/nar/21.15.3537CrossrefGoogle Scholar

  • [18] He Q., Brune D., Nieman R & Vermaas W. 1998. Chlorophyll a synthesis upon interruption and deletion of por coding for the light-dependent NADPH:protochlorophyllide oxidoreductase in a photosystem-I-less/chlL− strain of Synechocystis sp. PCC 6803. Eur. J. Biochem. 253: 161–172. http://dx.doi.org/10.1046/j.1432-1327.1998.2530161.xCrossrefGoogle Scholar

  • [19] Karpinska B., Karpinski S. & Hällgren J.-E. 1997. The chlB gene encoding a subunit of light-independent protochlorophyllide reductase is edited in chloroplasts of conifers. Curr. Genet. 31: 343–347. http://dx.doi.org/10.1007/s002940050214CrossrefGoogle Scholar

  • [20] Lebedev N., van Cleve B., Armstrong G. & Apel K. 1995. Chlorophyll synthesis in deetiolated (det340) mutant of arabidopsis without NADPH-Protochlorophyllide (Pchlide) oxidoreductase (POR) A and photoactive Pchlide-F655. Plant Cell. 7: 2081–2090. http://dx.doi.org/10.1105/tpc.7.12.2081CrossrefGoogle Scholar

  • [21] Li J., Goldschmidt-Clermont M. & Timko M.P. 1993. Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell. 5(12): 1817–1829. http://dx.doi.org/10.1105/tpc.5.12.1817CrossrefGoogle Scholar

  • [22] Li J. & Timko M.P. 1996. The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol. Biol. 30: 15–37. http://dx.doi.org/10.1007/BF00017800CrossrefGoogle Scholar

  • [23] Maul J.E., Lilly J.W., Cui L., dePamphilis C.W., Miller W., Harris E.H. & Stern D.B. 2002. The Chlamydomonas reinhardtii plastid chromosome: Island of genes in a sea of repeats. Plant Cell. 14: 2659–2679. http://dx.doi.org/10.1105/tpc.006155CrossrefGoogle Scholar

  • [24] Nomata J., Swem L.R., Bauer C.E. & Fujita Y. 2005. Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. Biochim. Biophys. Acta 1708: 229–237. http://dx.doi.org/10.1016/j.bbabio.2005.02.002CrossrefGoogle Scholar

  • [25] Ohyama K., Fukuzawa H., Kohchi T., Shirai H., Sano T., Sano, S., Umesono K., Shiki Y., Takeuchi, M., Chang, Z., Aota, S. I., Inokuchi, H. & Ozeki, H. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha. Nature 322: 572–574. http://dx.doi.org/10.1038/322572a0CrossrefGoogle Scholar

  • [26] Oosawa N., Masuda T., Awai K., Fusada N., Shimada H., Ohta H. & Takamiya K. 2000. Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Letters 474: 133. http://dx.doi.org/10.1016/S0014-5793(00)01568-4CrossrefGoogle Scholar

  • [27] Pombert J.F., Lemieux C. & Turmel M. 2006. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes. BMC Biol. 4: 1–15. http://dx.doi.org/10.1186/1741-7007-4-3CrossrefGoogle Scholar

  • [28] Reinbothe S., Runge S., Reinbothe C., Clev B. van & Apel K. 1995. Substrate dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Plant Cell. 7: 161–172. http://dx.doi.org/10.1105/tpc.7.2.161CrossrefGoogle Scholar

  • [29] Reinbothe S., Reinbothe C., Lebedev N. & Apel K. 1996. PORA and PORB, two light-dependent protochlorophyllide-reducing enzymes of angiosperm chlorophyll biosynthesis. Plant Cell. 8: 763–769. http://dx.doi.org/10.1105/tpc.8.5.763CrossrefGoogle Scholar

  • [30] Richard M., Tremblay C. & Bellemare G. 1994. Chloroplastic genomes of Ginkgo biloba and Chlamydomonas moewusii contain a chlB gene encoding one subunit of light-independent protochlorophyllide reductase. Curr. Genet. 26: 159–165. http://dx.doi.org/10.1007/BF00313805CrossrefGoogle Scholar

  • [31] Rochaix J.-D. 2002. Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Letters 529: 34–38. http://dx.doi.org/10.1016/S0014-5793(02)03181-2CrossrefGoogle Scholar

  • [32] Roitgrund C. & Mets L. 1990. Localization of two novel chloroplast functions: trans-splicing of RNA and protochlorophyllide reduction. Curr. Genet. 17: 147–153. http://dx.doi.org/10.1007/BF00312860CrossrefGoogle Scholar

  • [33] Ryberg M. & Sundqvist C. 1991. Structural and functional significance of pigment-protein complexes of chlorophyll precursors, pp. 587–612. In: Scheer H. (ed.), Chlorophylls. Chlorophylls, CRC Press, Boca Raton Florida. Google Scholar

  • [34] Schlessman J.L., Woo D., Joshua-Tor, L., Howard J.B. & Rees D.C. 1998. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. J. Mol. Biol. 280: 669–685. http://dx.doi.org/10.1006/jmbi.1998.1898CrossrefGoogle Scholar

  • [35] Shrager J., Hauser C., Chang, C.-W., Harris E.H., Davies J., McDermott J., Tamse R., Zhang, Z. & Grossman A.R. 2003. Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol. 131: 401–408. http://dx.doi.org/10.1104/pp.016899CrossrefGoogle Scholar

  • [36] Spano A.J., He Z., Michel H., Hunt D.F. & Timko M.P. 1992. Molecular cloning, nuclear gene structure and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol. Biol. 18: 967–972. http://dx.doi.org/10.1007/BF00019210CrossrefGoogle Scholar

  • [37] Surpin M., Larkin R. M., & Chory J. 2002. Signal transduction between the chloroplast and the nucleus. Plant Cell, Suppl. 2002, S327–S338. Google Scholar

  • [38] Suzuki J.Y. & Bauer C.E. 1992. Light-independent chlorophyll biosynthesis: Involvement of the chloroplast gene chlL (frxC). Plant Cell. 4: 929–940. http://dx.doi.org/10.1105/tpc.4.8.929CrossrefGoogle Scholar

  • [39] Suzuki J.Y., Bollivar D.W. & Bauer C.E. 1997. Genetic analysis of chlorophyll biosynthesis. Annu Rev. Genet. 31: 61–89. http://dx.doi.org/10.1146/annurev.genet.31.1.61CrossrefGoogle Scholar

  • [40] Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki T. & Sugiura M. 1994. Loss of all nadh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. P. Natl. Acad. Sci. USA 91: 9794–9798. http://dx.doi.org/10.1073/pnas.91.21.9794CrossrefGoogle Scholar

  • [41] Xiong J., Fisher W.M., Inoue K., Nakahara M. & Bauer C.E. 2000. Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730. http://dx.doi.org/10.1126/science.289.5485.1724CrossrefGoogle Scholar

  • [42] Yamada K., Matsuda M., Fujita Y., Matsubara H. & Sugai M. 1992. A frxC homolog exists in the chloroplast DNAs from various pteridophytes and in gymnosperms. Plant Cell Physiol. 33: 325–327. Google Scholar

About the article

Published Online: 2008-12-04

Published in Print: 2008-12-01


Citation Information: Biologia, Volume 63, Issue 6, Pages 947–951, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0147-3.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sangeeta Mahableshwar Naik and Arga Chandrashekar Anil
Journal of Photochemistry and Photobiology B: Biology, 2018
[2]
Manoj Kamalanathan, Ly Hai Thi Dao, Panjaphol Chaisutyakorna, Ros Gleadow, and John Beardall
Phycologia, 2017, Volume 56, Number 6, Page 666
[3]
Kim J. M. Mulders, Packo P. Lamers, Dirk E. Martens, René H. Wijffels, and R. Bassi
Journal of Phycology, 2014, Volume 50, Number 2, Page 229
[4]
Cheng Peng, Dionne M. Arthur, Homa Teimouri Sichani, Qing Xia, and Jack C. Ng
Chemosphere, 2013, Volume 93, Number 10, Page 2381

Comments (0)

Please log in or register to comment.
Log in