Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 6

Issues

The secretory glands of Asphodelus aestivus flower

Thomas Sawidis / Elzbieta Weryszko-Chmielewska / Vasiliki Anastasiou / Artemios Bosabalidis
Published Online: 2008-12-04 | DOI: https://doi.org/10.2478/s11756-008-0151-7

Abstract

Various secretory glands are observed on Asphodelus aestivus flower, a common geophyte of Mediterranean type ecosystem. The floral nectary has the form of individual slits between the gynecium carpels (septal nectary). The septal slits extend downwards to the ascidiate zone of the carpels. The nectar is secreted by the epidermal cells of the slits, which differentiate into epithelial cells. The latter contain numerous organelles, among which endoplasmic reticulum elements and golgi bodies predominate. Nectar secretion results in an expansion of the space between the septa. The nectar becomes discharged through small holes on the ovary wall. Six closely packed stamens surround the ovary and bear numerous papillae at their basis. These papillae are actually osmophores, i.e. secretory structures responsible for the manufacture, secretion and dispersion of terpenic scent. A mucilage gland (obturator) exists between the lateral ovule and the ovary septa, giving a positive reaction with Schiff’s reagent. This gland secretes a mucoproteinaceous product to nourish the pollen tube and to facilitate its penetration into the ovary.

Keywords: Asphodelus aestivus; flower; glands; geophyte; septal nectary; Mediterranean type ecosystem

  • [1] Bakker J.R. 1956. The histochemical recognition of phenols, especially tyrosine. Quart. J. Microsc. Sci. 97: 161–164. Google Scholar

  • [2] Bronner R. 1975. Simultaneous demonstration of lipids and starch in plant tissues. Stain Technol. 50: 1–4. PubMedGoogle Scholar

  • [3] Cheung Y.A. 1996. Pollen-pistil interactions during pollen-tube growth. Trends in Plant Science. 1: 45–51. http://dx.doi.org/10.1016/S1360-1385(96)80028-8CrossrefGoogle Scholar

  • [4] Ciampolini F., Faleri C. & Cresti M. 1995. Structural and cytochemical analysis of the stigma and style in Tibouchina semidecandra Cogn. (Melastomataceae). Ann. Bot. 76: 421–427. http://dx.doi.org/10.1006/anbo.1995.1115CrossrefGoogle Scholar

  • [5] Clifford S.C. & Sedgley M. 1993. Pistil structure of Banksia menziesii R. Br. (Proteaceae) in relation to fertility. Austral. J. Bot. 41: 481–490. http://dx.doi.org/10.1071/BT9930481CrossrefGoogle Scholar

  • [6] Cruden R.W. 1997. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31: 32–46. http://dx.doi.org/10.2307/2407542CrossrefGoogle Scholar

  • [7] Daumann E. 1970. Das Blütennektarium der Monocotyledonen unter besonderer Berücksichtigung seiner systematischen und phylogenetischen Bedeutung. Feddes Repert. 80: 463–590. Google Scholar

  • [8] Diaz Lifante Z. 1996. Reproductive biology of Asphodelus aestivus (Asphodelaceae). Pl. Syst. Evol. 200: 177–191. http://dx.doi.org/10.1007/BF00984934CrossrefGoogle Scholar

  • [9] Ehrlen J. 1991. Why do plants produce surplus flowers? A reserveovary model. Am. Nat. 138: 918–933. http://dx.doi.org/10.1086/285260CrossrefGoogle Scholar

  • [10] Fahn A. 1990. Plant Anatomy, 4th ed. Pergamon Press, Oxford, 587 pp. Google Scholar

  • [11] Harder L.D. 1986. Effects of nectar concentration and flower depth on flower handling efficiency of bumblebees. Oecologia 69: 309–315. http://dx.doi.org/10.1007/BF00377639CrossrefGoogle Scholar

  • [12] Herrero M. 1992. From pollination to fertilization in fruit trees. Plant Growth Regul. 11: 27–32. http://dx.doi.org/10.1007/BF00024429CrossrefGoogle Scholar

  • [13] Herrero M. 2000. Changes in the Ovary Related to Pollen Tube Guidance. Ann. Bot. 85: 179–185. http://dx.doi.org/10.1006/anbo.1999.1014CrossrefGoogle Scholar

  • [14] Knuth P. 1899. Handbuch der Blütenbiologie. Bd. II, 2. Verlag von Wilhelm Engelmann, Leipzig, p. 490. Google Scholar

  • [15] Kugler H. 1977. Zur Bestäubung mediterraner Frühjahrsblüher. Flora 166: 43–64. Google Scholar

  • [16] Lee T.D. 1988. Patterns of fruit and seed production, pp. 179–202. In: Lovett-Doust J. & Lovett-Doust L. (eds), Plant Reproductive Ecology, Oxford Univ. Press. Google Scholar

  • [17] Loew E. & Kirschner O. 1911. Asphodelus L., pp.296–303. In Kirschner, O., Loew E. & Schroter C. (eds), Lebensgeschichte der Blütenpflanzen Mitteleuropas 1(3), Stuttgart, Ulmer. Google Scholar

  • [18] Mace M.E. & Howell C.R. 1974. Histochemistry and identification of condensed tannin precursors in roots of cotton seedlings. Can. J. Bot. 52: 2423–2426. http://dx.doi.org/10.1139/b74-314CrossrefGoogle Scholar

  • [19] Manetas Y. & Petropoulou Y. 2000. Nectar amount, pollinator visit duration and pollination success in the Mediterranean shrub Cistus creticus. Ann. Bot. 86: 815–820. http://dx.doi.org/10.1006/anbo.2000.1241CrossrefGoogle Scholar

  • [20] Margaris N.S. 1984. Desertification in Greece. Progress in Biomet. 3: 120–128. Google Scholar

  • [21] Molisch H. 1923. Mikrochemie der Pflanze. Fischer, Jena, pp. 118–122. Google Scholar

  • [22] Naveh Z. 1973. The Ecology of fire in Israel. In: Proc. 13th Tall Timber Fire Ecology Conference. Tallahassee, Florida, pp. 139–170. Google Scholar

  • [23] Nevalainen J.J., Laitio M. & Lindgren I. 1972. Periodic acidschiff (PAS) staining of Epon-embedded tissues for light microscopy. Acta Histochem. 42: 230–233. Google Scholar

  • [24] Nilson S. 2000. Fragrance glands (osmophores) in the family Oleaceae, pp. 305–320. In: Nordenstam G., El-Ghazaly M. & Kassas (eds), Plant Systematics for the 21st Century, Portland Press, London. Google Scholar

  • [25] Pantis J. & Margaris N.S. 1988. Can systems dominated by asphodels be considered as semi-deserts? Int. J. Biomet. 32: 87–91. http://dx.doi.org/10.1007/BF01044899CrossrefGoogle Scholar

  • [26] Pantis J., Sgardelis S.P. & Stamou G.P. 1994. Asphodelus aestivus, an example of sychronization with the climate periodicity. Int. J. Biomet. 32: 87–91. http://dx.doi.org/10.1007/BF01044899CrossrefGoogle Scholar

  • [27] Sawidis, T., Eleftheriou E.P. & Tsekos I. 1987. The floral nectaries of Hibiscus rosa-sinensis L. I. Development of the secretory hairs. Ann. Bot. 59: 643–652. Google Scholar

  • [28] Sawidis T., Eleftheriou E.P. & Tsekos I. 1989. The floral nectaries of Hibiscus rosa-sinensis L. III. A morphometric and ultrastructural approach. Nord. J. Bot. 9: 63–71. http://dx.doi.org/10.1111/j.1756-1051.1989.tb00987.xCrossrefGoogle Scholar

  • [29] Sawidis T. 1991. A histochemical study of nectaries of Hibiscus rosa-sinensis. J. Exp. Bot. 42: 1477–1487. http://dx.doi.org/10.1093/jxb/42.11.1477CrossrefGoogle Scholar

  • [30] Sawidis T. 1998. The subglandular tissue of Hibiscus rosa-sinensis nectaries. Flora 193: 327–335. Google Scholar

  • [31] Sawidis T., Kalyba S. & Delivopoulos S. 2005. The root-tuber anatomy of Asphodelus aestivus. Flora, 200: 332–338. Google Scholar

  • [32] Simpson M.G. 1993. Septal nectary anatomy and phylogeny of the Haemodoraceae. Syst. Bot. 18: 593–613. http://dx.doi.org/10.2307/2419536CrossrefGoogle Scholar

  • [33] Stauffer W.F., Rutishauer R. & Endress K.P. 2002. Morphology and development of the female flowers in Genoma interrupta (Arecaceae). Am. J. Bot. 89: 220–229. http://dx.doi.org/10.3732/ajb.89.2.220CrossrefGoogle Scholar

  • [34] Stephenson A.G. 1981. Flower and fruit abortion: proximate causes and ultimate functions. Ann. Rev. Ecol. and Syst. 12: 253–279. http://dx.doi.org/10.1146/annurev.es.12.110181.001345CrossrefGoogle Scholar

  • [35] Sutherland S. 1986. Patterns of fruit-set: what controls fruit-flower ratios in plants? Evolution 40: 117–128. http://dx.doi.org/10.2307/2408609CrossrefGoogle Scholar

  • [36] Thiery J.P. 1967. Mise en evidence des polysaccharides sur coupes fines en microscopie electronique. J. Microsc. 6: 987–1018. Google Scholar

  • [37] Tilton V.R. & Horner J.H.T. 1980. Stigma, style and obturator of Ornithogalum caudatum (Liliaceae) and their function in the reproductive process. Am. J. Bot. 67: 1113–1131. http://dx.doi.org/10.2307/2442204CrossrefGoogle Scholar

  • [38] Tilton V.R., Wilcox L.W., Paplmer R.G. & Albertsen M.C. 1984. Stigma, style, and obturator of soybean, Glycine max (L.) Merr. (Leguminosae) and their function in the reproductive process. Am. J. Bot. 71: 676–686. http://dx.doi.org/10.2307/2443364CrossrefGoogle Scholar

  • [39] Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. & Webb D.A. 1980. Flora Europaea. Vol. V. Cambridge University Press, Cambridge. Google Scholar

  • [40] Vogel S. 1990. The role of scent glands in pollination: On the structure and function of osmophores. (Translation: Smithsonian Instit. Libraries Amerind Pub., New Delhi). Rotterdam, Balkema, 202 pp. Google Scholar

  • [41] Vogel S. 1998. Remarkable nectaries: structure, ecology, organophyletic perspectives. Nectar ducts. Flora 193: 113–131. Google Scholar

  • [42] Vogel S. 2000. A survey of the function of the lethal kettle traps of Arisaema (Araceae), with records of pollinating fungus gnats from Nepal. Bot. J. Linnean Soc. 133: 61–100. http://dx.doi.org/10.1111/j.1095-8339.2000.tb01537.xCrossrefGoogle Scholar

  • [43] Webb M.C. & Williams E.G. 1988. The pollen tube pathway in the pistil of Lycopersicon peruvianum. Ann. Bot. 61: 415–424. Google Scholar

  • [44] Weber M. & Frosch A. 1995. The development of the transmitting tract in the pistil of Hacquetia epipactis (Apiaceae). Internat. J. Plant Sci. 156: 615–621. http://dx.doi.org/10.1086/297283CrossrefGoogle Scholar

About the article

Published Online: 2008-12-04

Published in Print: 2008-12-01


Citation Information: Biologia, Volume 63, Issue 6, Pages 1118–1123, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0151-7.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chrysanthi Chimona, Danae Koukos, Maria-Sonia Meletiou-Christou, Emmanuel Spanakis, Apostolos Argiropoulos, and Sophia Rhizopoulou
Flora, 2018
[2]
Thomas Sawidis, Theano Theodoridou, Elzbieta Weryszko-Chmielewska, and Artemios Bosabalidis
Biologia, 2011, Volume 66, Number 4
[3]
Yael Samocha and Marcelo Sternberg
Arthropod-Plant Interactions, 2010, Volume 4, Number 3, Page 153

Comments (0)

Please log in or register to comment.
Log in