Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 6

Issues

Coal-smoke pollution modifies physio-chemical characteristics of tissues during the ontogeny of Peristrophe bicalyculata

Farah Nighat / Mahmooduzzafar / Muhammad Iqbal
Published Online: 2008-12-04 | DOI: https://doi.org/10.2478/s11756-008-0157-1

Abstract

Coal-smoke emissions of a thermal power plant affected the physio-chemical status of Peristrophe bicalyculata (Reth) Nees, as observed at the pre-flowering, flowering and post-flowering stages of plant growth. The nitrate level was raised while nitrate reductase activity, and the soluble protein content of leaf declined heavily at the polluted site during different stages of plant growth, compared to the control. The rate of photosynthesis also decreased under the pollution stress. Sugar level in root, stem and leaves increased with growing age of the plant but was always lower at the polluted site than at the reference site. In roots, the difference was marginal till flowering stage and quite conspicuous afterwards; stems showed a reverse pattern of variation. Sulphur content was higher at the polluted site in all the organs and at each stage of the plant life. The Zn and Fe concentrations were reduced in all plant parts under the pollution stress. Copper content in root was consistently low at the polluted site. In the stem and leaves, however, it was almost equal on both the sites at the pre-flowering stage but showed a wide difference during the later part of plant ontogeny.

Keywords: Peristrophe bicalyculata; air pollution; heavy metals; ion accumulation; NR activity; photosynthesis

  • [1] Agrawal M. 2003. Plant responses to atmospheric sulphur, pp. 279–294. In: Abrol Y.P. & Ahmad A. (eds), Sulphur in Plants. Kluwer Academic Publishers, Dordrecht. Google Scholar

  • [2] Arnon D.I. 1949. Copper enzymes in isolated chloroplasts of plants. Plant Physiol. 4: 29–39. Google Scholar

  • [3] Balsberg A.M. 1989. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut. 47: 287–319. http://dx.doi.org/10.1007/BF00279329CrossrefGoogle Scholar

  • [4] Borland A.M. & Lea P.J. 1991. The response of enzymes of nitrogen and sulphur metabolism in barley to low doses of sulphur dioxide. Agric. Ecosyst. Environ. 33: 281–292. http://dx.doi.org/10.1016/0167-8809(91)90007-KCrossrefGoogle Scholar

  • [5] Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein using principle of protein-dye binding. Annalyt. Biochem. 72: 248–259. http://dx.doi.org/10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • [6] Burkill I.H. 1935. A Dictionary of the Economic Products of the Malay Peninsula. 2 Vols. The Crown Agents for the Colonies, London. Google Scholar

  • [7] Chesnin L. & Yein C.H. 1950. Turbidimetric determination of available sulphates. Soil. Sci. Ann. Proc. 15: 149–151. http://dx.doi.org/10.2136/sssaj1951.036159950015000C0032xCrossrefGoogle Scholar

  • [8] Dey P.M. & Harborne J.B. 1990. Methods in Plant Biochemistry. Vol. II. Carbohydrates. Academic Press, London, 657 pp. Google Scholar

  • [9] Dhir B., Sharma M.P., Mahmooduzzafar & Iqbal M. 1999. Form and function of Achyranthes aspera Linn. under air pollution stress. J. Environ. Biol. 20: 19–23. Google Scholar

  • [10] Freedman B. 1989. Environmental Ecology: The Impacts of Pollution and Other Stresses on Ecosystem Structure and Function. Academic Press, San Diego, 424 pp. Google Scholar

  • [11] Gangopadhyay & Santra S.C. 1996. Effect of heavy metal on chlorophyll content and nitrogenase activity of Azolla pinnata R. Br. Pollut. Res. 15: 95–97. Google Scholar

  • [12] Grover H.L., Nair T.V.R. & Abrol Y.P. 1978. Nitrogen metabolism of upper three leaf blades of wheat at different soil nutrition levels. NR activity and content of various nitrogenous constituents. Plant Physiol. 42: 287–292. http://dx.doi.org/10.1111/j.1399-3054.1978.tb04084.xCrossrefGoogle Scholar

  • [13] Hesketh H.E. 1973. Understanding and Controlling Air Pollution. Amer Arbor Sci. Publ, Ann Arbor, Michigan. Google Scholar

  • [14] Huang L., Murray F. & Yang X. 1993. Responses of nitrogen metabolism parameters to sublethal SO2 pollution in wheat [Triticum aestivum cv. Wilgoyne, (clano/gallo)] under mild NaCl stress. Environ. Exp. Bot. 33: 479–493. http://dx.doi.org/10.1016/0098-8472(93)90021-7CrossrefGoogle Scholar

  • [15] Iqbal M., Srivastava P.S. & Siddiqi T.O. 2000. Anthropogenic stresses in the environment and their consequences, pp. 1–38. In: Iqbal M., Srivastava P.S. & Siddiqi T.O. (eds), Environmental Hazards: Plants and People. CBS Publishers, New Delhi. Google Scholar

  • [16] Iqbal M., Bano R. & Wali B. 2005. Plant growth responses to air pollution, pp. 166–188. In: Chaturvedi S.N. & Singh K.P. (eds), Plant Biodiversity, Microbial Interaction and Environmental Biology. Avishkar Publishers, Jaipur. Google Scholar

  • [17] Ishibashi M., Sonoike K. & Watanabe A. 1997. Photoinhibition of photosynthesis during the rain treatment: Intersystem electron transfer chain as the site of inhibition. Plant Cell Physiol. 38: 96–146. Google Scholar

  • [18] Joshi U.N., Arora S.K. & Luthra Y.P. 1993. SO2 induced changes in CO2 fixation and photosynthetic pigments in Sorghum bicolor leaves. Ann. Biol. 9: 102–108. Google Scholar

  • [19] Khan T.I., Kaur N. & Agarwal M. 1997. Heavy metal analysis of crop plants from agriculture fields of Sanganer town. J. Environ. Pollut. 4: 35–38. Google Scholar

  • [20] Khudsar T., Mahmooduzzafar, Iqbal M. & Sairam R.K. 2004. Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol. Plant. 48: 255–260. http://dx.doi.org/10.1023/B:BIOP.0000033453.24705.f5CrossrefGoogle Scholar

  • [21] Khudsar T., Arshi A., Siddiqi T.O., Mahmooduzzafar & Iqbal M. 2008. Zinc-induced changes in growth characters, foliar properties and Zn-accumulation capacity of pigeon pea at different stages of plant growth. J. Plant Nutr. 31: 281–306. http://dx.doi.org/10.1080/01904160701853894CrossrefWeb of ScienceGoogle Scholar

  • [22] Klepper L., Flesher D. & Hageman R.H. 1971. Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol. 48: 580–590. CrossrefGoogle Scholar

  • [23] Kumar N. & Singh V. 1988. Sensitivity of Mangifera indica and Psidium guajava plants to SO2 pollution. Natl. Acad. Sci. Lett. 11: 167–172. Google Scholar

  • [24] Mahmooduzzafar, Nighat F. & Iqbal M. 2003. Carbon assimilation, partitioning and bioaccumulation in Ruellia tuberosa plants under coal-smoke pollution. Int. J. Ecol. Environ. Sci. 30: 215–223. Google Scholar

  • [25] Malhotra S.C. & Khan A.A. 1984. Biochemical and physiological impact of major air pollution, pp. 33–58s. In: Treshow M. (ed), Air Pollution and Plant Life. John Wiley & Sons, Chichester. Google Scholar

  • [26] Malhotra S.S. & Sarkar S.K. 1979. Effect of SO2 on sugar and free amino acid content of pine seedlings. Physiol. Plant. 47: 223–228. http://dx.doi.org/10.1111/j.1399-3054.1979.tb06517.xCrossrefGoogle Scholar

  • [27] Meng F.R., Bourque C.P.A., Belezewski R.F., Whitney N.J. & Arp P.A. 1995. Foliage responses of spruce trees to long term low grade SO2 deposition. Environ. Pollut. 90: 143–152. http://dx.doi.org/10.1016/0269-7491(94)00101-ICrossrefGoogle Scholar

  • [28] Moral R., Gomez I., Pedreno J.N. & Mataix J. 1994. Effects of cadmium on nutrient distribution, yield and growth of tomato grown in soilless culture. J. Plant. Nutr. 17: 953–962. http://dx.doi.org/10.1080/01904169409364780CrossrefGoogle Scholar

  • [29] Nighat F., Mahmooduzzafar & Iqbal M. 1999. Foliar responses of Peristrophe bicalyculata to coal-smoke pollution. J. Plant Biol. 42: 205–212. http://dx.doi.org/10.1007/BF03030480CrossrefGoogle Scholar

  • [30] Nighat F., Mahmooduzzafar & Iqbal M. 2000. Stomatal conductance, photosynthetic rate, and pigment content in Ruellia tuberosa leaves as affected by coal-smoke pollution. Biol. Plant. 43: 263–267. http://dx.doi.org/10.1023/A:1002712528893CrossrefGoogle Scholar

  • [31] Pandey D.D., Sinha C.S. & Tiwari M.G. 1991. Impact of coal dust pollution on biomass, chlorophyll and grain characteristics of rice. Biol. J. 3: 51–55. Google Scholar

  • [32] Peterson C.A. & Rauser W.E. 1979. Callose deposition and photoassimilate export in Phaseolus vulgaris exposed to excess cobalt, nickel and zinc. Plant Physiol. 63: 1170–1174. CrossrefGoogle Scholar

  • [33] Prasad M.N.V. & Hagemeyer J. 1999. Heavy Metal Stress In Plants: From molecules to Ecosystem. Springer-Verlag, Berlin, Heidelberg, Germany. Google Scholar

  • [34] Shimazaki K.I., Sakaki T., Kondo D. & Sughara K. 1980. Active O2 participation in chlorophyll destruction and lipid peroxidation in SO2-fumigated leaves of spinach. Plant Cell Physiol. 21: 1193–1204. Google Scholar

  • [35] Soares A., Ming S.Y. & Pearson J. 1995. Physiological indicators and susceptibility of plants to an acidifying atmosphere pollution. Environ. Pollut. 87: 159–166. http://dx.doi.org/10.1016/0269-7491(94)P2602-6CrossrefGoogle Scholar

  • [36] Suwannapinunt W. & Kozlowski T.T. 1980. Effect of SO2 on transpiration, chlorophyll content, growth and injury in young seedlings of woody angiosperms. Can. J. For. Res. 10: 78–81. http://dx.doi.org/10.1139/x80-013Google Scholar

  • [37] Umar S., Moinuddin & Iqbal M. 2005. Heavy metals: availability, accumulation and toxicity in plants, pp. 325–348. In: Dwivedi P. & Dwivedi R.S. (eds), Physiology of Abiotic Stress in Plants. Agrobios (India), Jodhpur. Google Scholar

  • [38] Wali B., Mahmooduzzafar & Iqbal M. 2007. Anatomical and functional responses of Calendula officinalis L. to SO2 stress as observed at different stages of plant development. Flora 202: 268–280. Web of ScienceGoogle Scholar

  • [39] Williams A.J. & Banerjee S.K. 1995. Effect of thermal power plant emissions on the metabolic activities of Mangifera indica and Shorea robusta. Environ. Ecol. 13: 914–919. Google Scholar

About the article

Published Online: 2008-12-04

Published in Print: 2008-12-01


Citation Information: Biologia, Volume 63, Issue 6, Pages 1128–1134, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0157-1.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sami Ullah Qadir, Vaseem Raja, and Weqar A. Siddiqui
Ecotoxicology and Environmental Safety, 2016, Volume 129, Page 320
[2]
M. Govindaraju, R. S. Ganeshkumar, V. R. Muthukumaran, and P. Visvanathan
Environmental Science and Pollution Research, 2012, Volume 19, Number 4, Page 1210
[3]
Muhammad Iqbal, Joanna Jura-Morawiec, WiesŁaw WŁoch, and Mahmooduzzafar
Flora - Morphology, Distribution, Functional Ecology of Plants, 2010, Volume 205, Number 1, Page 61
[4]
Muhammad Iqbal, Mahmooduzzafar, Farah Nighat, and Pervaiz R. Khan
Journal of Plant Interactions, 2010, Volume 5, Number 1, Page 11
[5]
Muhammad Iqbal, Mahmooduzzafar, Ibrahim M. Aref, and Pervaiz R. Khan
Journal of Plant Interactions, 2010, Volume 5, Number 2, Page 117

Comments (0)

Please log in or register to comment.
Log in