Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 6

Issues

An enzyme family reunion — similarities, differences and eccentricities in actions on α-glucans

Eun-Seong Seo
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg. 224, DK-2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Camilla Christiansen
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg. 224, DK-2800, Kgs. Lyngby, Denmark
  • Plant Biology Laboratory, Faculty of Life Sciences, University of Copenhagen, DK-1871, Frederiksberg, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maher Abou Hachem
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg. 224, DK-2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Morten Nielsen
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg. 224, DK-2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kenji Fukuda
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg. 224, DK-2800, Kgs. Lyngby, Denmark
  • Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500, Valby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sophie Bozonnet
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg. 224, DK-2800, Kgs. Lyngby, Denmark
  • Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500, Valby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Blennow / Nushin Aghajari
  • Laboratorie de BioCristallographie, Institut de Biologie et Chimie des Protéines, UMR 5086-CNRS/Université de Lyon, IFR128 “BioSciences Gerland Lyon-Sud”, F-69367, Lyon, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Richard Haser
  • Laboratorie de BioCristallographie, Institut de Biologie et Chimie des Protéines, UMR 5086-CNRS/Université de Lyon, IFR128 “BioSciences Gerland Lyon-Sud”, F-69367, Lyon, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Birte Svensson
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg. 224, DK-2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-12-04 | DOI: https://doi.org/10.2478/s11756-008-0164-2

Abstract

α-Glucans in general, including starch, glycogen and their derived oligosaccharides are processed by a host of more or less closely related enzymes that represent wide diversity in structure, mechanism, specificity and biological role. Sophisticated three-dimensional structures continue to emerge hand-in-hand with the gaining of novel insight in modes of action. We are witnessing the “test of time” blending with remaining questions and new relationships for these enzymes. Information from both within and outside of ALAMY_3 Symposium will provide examples on what the family contains and outline some future directions. In 2007 a quantum leap crowned the structural biology by the glucansucrase crystal structure. This initiates the disclosure of the mystery on the organisation of the multidomain structure and the “robotics mechanism” of this group of enzymes. The central issue on architecture and domain interplay in multidomain enzymes is also relevant in connection with the recent focus on carbohydrate-binding domains as well as on surface binding sites and their long underrated potential. Other questions include, how different or similar are glycoside hydrolase families 13 and 31 and is the lid finally lifted off the disguise of the starch lyase, also belonging to family 31? Is family 57 holding back secret specificities? Will the different families be sporting new “eccentric” functions, are there new families out there, and why are crystal structures of “simple” enzymes still missing? Indeed new understanding and discovery of biological roles continuously emphasize value of the collections of enzyme models, sequences, and evolutionary trees which will also be enabling advancement in design for useful and novel applications.

Keywords: glycoside hydrolase families 13, 31, 57, 70, and 77; crystal structures; substrate specificities; surface binding sites; degree of multiple attack; starch granules; calcium ions; starch-binding domains; barley α-amylase

  • [1] Abbott D.W., van Bueren A.L. & Boraston A. 2007. Structural insights into the recognition of α-glucans by carbohydrate-binding modules, p. 39. In: Janecek S. (ed.), 3rd Symposium on the Alpha-Amylase Family, Programme and Abstracts, Sep 23–27, 2007, Smolenice Castle, Slovakia, Asco Arts & Science, Bratislava. Google Scholar

  • [2] Bak-Jensen K.S., André G., Gottschalk T.E., Paës G., Tran V. & Svensson B. 2004. Tyrosine 105 and threonine 212 at outer-most substrate binding subsites −6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley α-amylase 1. J. Biol. Chem. 279: 10093–10102. http://dx.doi.org/10.1074/jbc.M312825200Google Scholar

  • [3] Bak-Jensen K.S., Laugesen S., Østergaard O., Finnie C., Roepstorff P. & Svensson B. 2007. Spatio-temporal profiling and degradation of α-amylase isozymes during barley seed germination. FEBS J. 274: 2552–2565. http://dx.doi.org/10.1111/j.1742-4658.2007.05790.xCrossrefGoogle Scholar

  • [4] Beier L., Svendsen A., Andersen C., Frandsen T.P., Borchert T.V. & Cherry J.R. 2000. Conversion of the maltogenic α-amylase Novamyl into a CGTase. Protein Eng. 13: 509–513. http://dx.doi.org/10.1093/protein/13.7.509CrossrefGoogle Scholar

  • [5] Blennow A., Engelsen S.B., Nielsen T.H., Baunsgaard L. & Mikkelsen R. 2002. Starch phosphorylation — a new front line in starch research. Trends Plant Sci. 7: 445–450. http://dx.doi.org/10.1016/S1360-1385(02)02332-4CrossrefGoogle Scholar

  • [6] Boraston A.B., Bolam D.N., Gilbert H.J. & Davies G.J. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382: 769–781. http://dx.doi.org/10.1042/BJ20040892CrossrefGoogle Scholar

  • [7] Boraston, A.B., Healey, M., Klassen, J., Ficko-Blean, E., Lammerts van Bueren, A. & Law, V. 2006. A structural and functional analysis of α-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J. Biol. Chem. 281: 587–598. http://dx.doi.org/10.1074/jbc.M509958200CrossrefGoogle Scholar

  • [8] Bozonnet S., Dols-Laffargue M., Fabre E., Pizzut S., Remaud-Simeon M., Monsan P. & Willemot R.M. 2002. Molecular characterization of DSR-E and an α-1,2 linkage-synthesizing dextransucrase with two catalytic domains. J. Bacteriol. 184: 5753–5761. http://dx.doi.org/10.1128/JB.184.20.5753-5761.2002CrossrefGoogle Scholar

  • [9] Bozonnet S., Jensen M.T., Nielsen M.M., Aghajari N., Jensen M.H., Kramhøft B., Willemoës M., Tranier S., Haser R. & Svensson B. 2007. The “pair of sugar tongs” site on the non-catalytic domain C of barley α-amylase participates in substrate binding and activity. FEBS J. 274: 5055–5067. http://dx.doi.org/10.1111/j.1742-4658.2007.06024.xCrossrefGoogle Scholar

  • [10] Brison B., Fabre E., Bozonnet S., Monsan P. & Remaud-Simeon M. 2007. How to synthesize the rare α-1,2 glucosidic linkage with an enzyme derived from a GH70 family glucansucrase?, p. 25. In: Janecek S. (ed.), 3rd Symposium on the Alpha-Amylase Family, Programme and Abstracts, Sep 23–27, 2007, Smolenice Castle, Slovakia, Asco Arts & Science, Bratislava. Google Scholar

  • [11] Brzozowski A.M., Lawson D.M., Turkenberg J.P., Bisgård-Frantzen H., Svendsen A., Borchert T.V., Dauter Z., Wilson K.S. & Davies G.J. 2000. Structural analysis of a chimeric bacterial α-amylase. High-resolution analysis of native and ligand complexes. Biochemistry 39: 9099–9107. http://dx.doi.org/10.1021/bi0000317CrossrefGoogle Scholar

  • [12] Bønsager B.C., Nielsen P.K., Abou Hachem M., Fukuda K., Prætorius-Ibba M. & Svensson B. 2005. Mutational analysis of target enzyme recognition of the β-trefoil fold barley α-amylase/subtilisin inhibitor. J. Biol. Chem. 280: 14855–14864. http://dx.doi.org/10.1074/jbc.M412222200CrossrefGoogle Scholar

  • [13] Cho M.J., Wong J.H., Marx C., Jiang W., Lemaux P.G. & Buchanan B.B. 1999. Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grain. Proc. Natl. Acad. Sci. USA 96: 14641–14646. http://dx.doi.org/10.1073/pnas.96.25.14641CrossrefGoogle Scholar

  • [14] Coutinho P.M. & Henrissat B. 1999. Carbohydrate active enzymes: an integrated database approach, pp. 3–12. In: Gilbert H.J., Davies G.J., Henrissat B. & Svensson B. (eds), Recent Advances in Carbohydrate Bioengineering, The Royal Society of Chemistry, Cambridge. Google Scholar

  • [15] Ernst H.A., Lo Leggio L., Willemoës M., Leonard G., Blum P. & Larsen S. 2006. Structure of the Sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31. J. Mol. Biol. 358: 1106–1124. http://dx.doi.org/10.1016/j.jmb.2006.02.056CrossrefGoogle Scholar

  • [16] Fabre E., Bozonnet S., Arcache A., Willemot R.M., Vignon M., Remaud-Simeon M. & Monsan P. 2005. Role of the two catalytic domains of DSR-E dextransucrase and their involvement in the formation of highly α-1,2 branched dextran. J. Bacteriol. 187: 206–303. http://dx.doi.org/10.1128/JB.187.1.296-303.2005CrossrefGoogle Scholar

  • [17] Fukuda K., Jensen M.H., Haser R., Aghajari N. & Svensson B. 2005. Biased mutagenesis in the N-terminal region by degenerate oligonucleotide gene shuffling enhances secretory expression of barley α-amylase 2 in yeast. Protein Eng. Des. Sel. 18: 515–526. http://dx.doi.org/10.1093/protein/gzi057CrossrefGoogle Scholar

  • [18] Giardina T., Gunning A.P., Juge N., Faulds C.B., Furniss C.S.M., Svensson B., Morris V.J. & Williamson G. 2001. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J. Mol. Biol. 313: 1149–1159. http://dx.doi.org/10.1006/jmbi.2001.5097CrossrefGoogle Scholar

  • [19] Gibson R.M. & Svensson B. 1987. Identification of tryptophanyl residues involved in binding of carbohydrate ligands to barley α-amylase 2. Carlsberg Res. Commun. 52: 373–379. http://dx.doi.org/10.1007/BF02907525CrossrefGoogle Scholar

  • [20] Gottschalk T.E., Tull D., Aghajari N., Haser R. & Svensson B. 2001. Specificity modulation of barley α-amylase 1 by biased random mutation of a tripeptide in β → α loop 7 of the catalytic (β/α)8-domain. Biochemistry 40: 12844–12854. http://dx.doi.org/10.1021/bi0108608CrossrefGoogle Scholar

  • [21] Hondoh H., Saburi W., Mori H., Okuyama M., Nakada T., Matsuura Y. & Kimura A. 2008. Substrate recognition mechanism of α-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J. Mol. Biol. 378: 911–920. http://dx.doi.org/10.1016/j.jmb.2008.03.016CrossrefGoogle Scholar

  • [22] Janecek S., Svensson B. & MacGregor E.A. 2003. Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. Eur. J. Biochem. 270: 635–645. http://dx.doi.org/10.1046/j.1432-1033.2003.03404.xCrossrefGoogle Scholar

  • [23] Janecek S., Svensson B. & MacGregor E.A. 2007. A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. FEBS Lett. 581: 1261–1268. http://dx.doi.org/10.1016/j.febslet.2007.02.036CrossrefGoogle Scholar

  • [24] Juge N., Andersen J.S., Tull D., Roepstorff P. & Svensson B. 1996. Overexpression, purification, and characterization of recombinant barley α-amylases 1 and 2 secreted by the methylotrophic yeast. Pichia pastoris. Protein Express. Purif. 8: 204–214. Google Scholar

  • [25] Juge N., Nøhr J., Le Gal-Coëffet M.F., Kramhøft B., Furniss C.S.M., Planchot V., Archer D.B., Williamson G. & Svensson B. 2006. The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochim. Biophys. Acta 1764: 275–284. Google Scholar

  • [26] Kadziola A., Søgaard M., Svensson B. & Haser R. 1998. Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. J. Mol. Biol. 279: 205–217. http://dx.doi.org/10.1006/jmbi.1998.1683CrossrefGoogle Scholar

  • [27] Kandra L., Abou Hachem M., Gyemant G., Kramhøft B. & Svensson B. 2006. Mapping of barley α-amylase and outer subsite mutants reveal high-affinity subsites and barriers in the long substrate binding cleft. FEBS Lett. 580: 5049–5053. http://dx.doi.org/10.1016/j.febslet.2006.08.028CrossrefGoogle Scholar

  • [28] Kim T.J., Nguyen V.D., Lee H.S., Kim M.J., Cho H.Y., Kim Y.W., Moon T.W., Park C.S., Kim J.W., Oh B.H., Lee S.B., Svensson B. & Park K.H. 2001. Modulation of the multisubstrate specificity of Thermus maltogenic amylase by truncation of the N-terminal domain and by a salt-induced shift of the monomer/dimer equilibrium. Biochemistry 40: 14182–14190. http://dx.doi.org/10.1021/bi015531uCrossrefGoogle Scholar

  • [29] Kitamura M., Ose T., Okuyama M., Watanabe H., Yao M., Mori H., Kimura A. & Tanaka I. 2005. Crystallization and preliminary X-ray analysis of α-xylosidase from Escherichia coli. Acta Cryst. F61: 178–179. Google Scholar

  • [30] Krajl S., Eeuwema W., Eckhardt T.H. & Dijkhuizen L. 2006. Role of asparagine 1134 in glucosidic bond and transglycosylation specificity of reuteransucrase from Lactobacillus reuteri 121. FEBS J. 273: 3735–3742. http://dx.doi.org/10.1111/j.1742-4658.2006.05376.xCrossrefGoogle Scholar

  • [31] Kralj S., Van Geel-Schutten I.G., Faber E.J., van der Maarel M.J. & Dijkhuizen L. 2005. Rational transformation of Lactobacillus reuteri 121 reuteransucrase into a dextransucrase. Biochemistry 44: 9206–9216. http://dx.doi.org/10.1021/bi050447qCrossrefGoogle Scholar

  • [32] Kramhøft B., Bak-Jensen K.S., Mori H., Juge N., Nøhr J. & Svensson B. 2005. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley α-amylase. Biochemistry 44: 1824–1832. http://dx.doi.org/10.1021/bi048100vCrossrefGoogle Scholar

  • [33] Kuriki T., Kaneko H., Yanase M., Takata H., Shimada J., Handa S., Takada T., Umeyama H. & Okada S. 1996. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. J. Biol. Chem. 271: 17321–17329. http://dx.doi.org/10.1074/jbc.271.29.17321CrossrefGoogle Scholar

  • [34] Lee S.S., Yu S. & Withers S.G. 2003. Detailed dissection of a new mechanism for glycoside cleavage: α-1,4-glucan lyase. Biochemistry 42: 13081–13090. http://dx.doi.org/10.1021/bi035189gCrossrefGoogle Scholar

  • [35] Leemhuis H., Kragh K.M., Dijkstra B.W. & Dijkhuizen L. 2003. Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity. J. Biotechnol. 103: 203–212. http://dx.doi.org/10.1016/S0168-1656(03)00126-3CrossrefGoogle Scholar

  • [36] Liu Y.N., Lai Y.T., Chou W I., Chang M.D. & Lyu P.C. 2007. Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem. J. 403: 21–30. http://dx.doi.org/10.1042/BJ20061312CrossrefGoogle Scholar

  • [37] Lovering A.L., Lee S.S., Kim Y.W., Withers S.G. & Strynadka N.C. 2005. Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate. J. Biol. Chem. 280: 2105–2115. http://dx.doi.org/10.1074/jbc.M410468200CrossrefGoogle Scholar

  • [38] Lyhne-Iversen L., Hobley T.J., Kaasgaard S.G. & Harris P. 2006. Structure of Bacillus halmapalus α-amylase crystallized with and without the substrate analogue acarbose and maltose. Acta Cryst. F62: 849–854. Google Scholar

  • [39] MacGregor E.A. 2004. The proteinaceous inhibitor of limit dextrinase in barley and malt. Biochim. Biophys. Acta 1696: 165–170. Google Scholar

  • [40] MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20. Google Scholar

  • [41] MacGregor E.A., Jespersen H.M. & Svensson B. 1996. A circularly permuted α-amylase-type α/β-barrel in glucan-synthesizing glucosyltransferases. FEBS Lett. 378: 263–266. http://dx.doi.org/10.1016/0014-5793(95)01428-4CrossrefGoogle Scholar

  • [42] Machovic M. & Janecek S. 2006. Starch-binding domains in the post-genome era. Cell. Mol. Life Sci. 63: 2710–2724. http://dx.doi.org/10.1007/s00018-006-6246-9CrossrefGoogle Scholar

  • [43] Machovic M. & Janecek S. 2008. Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate binding module family 48. Biologia 63: 1057–1068. Google Scholar

  • [44] Machovic M., Svensson B., MacGregor E.A. & Janecek S. 2005. A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J. 272: 5497–5513. http://dx.doi.org/10.1111/j.1742-4658.2005.04942.xCrossrefGoogle Scholar

  • [45] Maeda K., Finnie C., Østergaard O. & Svensson B. 2003. Identification, cloning and characterisation of two thioredoxin h isoforms, HvTrx1 and HvTrx2, from the barley seed proteome. Eur. J. Biochem. 270: 2633–2643. http://dx.doi.org/10.1046/j.1432-1033.2003.03637.xCrossrefGoogle Scholar

  • [46] Maeda K., Finnie C. & Svensson B. 2005. Identification of thiore-doxin h-reducible disulphides in proteomes by differential labeling of cysteines: Insight into recognition of proteins in barley seeds by thioredoxin h. Proteomics 5: 1634–1644. http://dx.doi.org/10.1002/pmic.200401050CrossrefGoogle Scholar

  • [47] Maeda K., Hägglund P., Finnie C., Svensson B. & Henriksen A. 2006. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin. Structure 14: 1701–1710. http://dx.doi.org/10.1016/j.str.2006.09.012CrossrefGoogle Scholar

  • [48] Marion C.L., Rappleye C.A., Engle J.T. & Goldman W.E. 2006. An α-(1,4)-amylase is essential for α-(1,3)-glucan production and virulence in Histoplasma capsulatum. Mol. Microbiol. 62: 970–983. http://dx.doi.org/10.1111/j.1365-2958.2006.05436.xCrossrefGoogle Scholar

  • [49] Mikkelsen R., Suszkiewicz K. & Blennow A. 2006. A novel type carbohydrate-binding module identified in α-glucan, water dikinases is specific for regulated plastidial starch metabolism. Biochemistry 45: 4674–4682. http://dx.doi.org/10.1021/bi051712aCrossrefGoogle Scholar

  • [50] Mori H., Bak-Jensen K.S., Gottschalk T.E., Motawia M.S., Damager I., Møller B.L. & Svensson B. 2001. Modulation of activity and substrate binding modes by single and double subsites +1/+2 and −5/−6 mutation of barley α-amylase 1. Eur. J. Biochem. 268: 6545–6558. http://dx.doi.org/10.1046/j.0014-2956.2001.02609.xCrossrefGoogle Scholar

  • [51] Murakami T., Kanai T., Takaha H., Kuriki T. & Imanaka T. 2006. A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 188: 5915–5924. http://dx.doi.org/10.1128/JB.00390-06CrossrefGoogle Scholar

  • [52] Nakai H., Tanizawa S., Ito T., Kamiya K., Kim Y.M., Yamamoto T., Matsubara K., Sakai M., Sato H., Imbe T., Okuyama M., Mori H., Chiba S., Sano Y. & Kimura A. 2008. Rice α-glucosidase isozymes and isoforms showing different starch granules-binding and-degrading ability. Biocatal. Biotransf. 26: 104–110. http://dx.doi.org/10.1080/10242420701788736CrossrefGoogle Scholar

  • [53] Nielsen P.K., Bønsager B.C., Berland C.R. Sigurskjold B.W. & Svensson B. 2003. Kinetics and energetics of the binding between barley α-amylase/subtilisin inhibitor and barley α-amylase 2 studied by surface plasmon resonance and isothermal titration calorimetry. Biochemistry 42: 1478–1487. http://dx.doi.org/10.1021/bi020508+CrossrefGoogle Scholar

  • [54] Nordberg Karlsson E., Labes A., Turner P., Fridjohnsson O.H., Wennerberg C., Pozzo T., Hreggvidson G.O., Kristjansson J.K. & Schönheit P. 2008. Differences and similarities in enzymes from the neopullulanase subfamily isolated from thermophilic species. Biologia 63: 1006–1014. Google Scholar

  • [55] Okuyama M., Kaneko A., Mori H., Chiba S. & Kimura A. 2006. Structural elements to convert Escherichia coli α-xylosidase (YicI) into α-glucosidase. FEBS Lett. 580: 2707–2711. http://dx.doi.org/10.1016/j.febslet.2006.04.025CrossrefGoogle Scholar

  • [56] Oudjeriouat N., Moreau, Y., Santimone, M., Svensson, B., Marchis-Mouren, G. & Desseaux, V. 2003. On the mechanism of α-amylase. Eur. J. Biochem. 270: 3871–3879. http://dx.doi.org/10.1046/j.1432-1033.2003.03733.xCrossrefGoogle Scholar

  • [57] Park J.T., Park H.S., Kang H.K., Hong J.S., Cha H., Woo E.J., Kim J.W., Kim M.J., Boos W., Lee S. & Park K.H. 2008. Oligomeric and functional properties of a debranching enzyme (TreX) from the archaeon Sulfolobus solfataricus P2. Biocatal. Biotransf. 26: 76–85. http://dx.doi.org/10.1080/10242420701806652CrossrefGoogle Scholar

  • [58] Park K.H., Kim T.J., Cheong T.K., Kim J.W., Oh B.H. & Svensson B. 2000. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim. Biophys. Acta 1478: 165–185. Google Scholar

  • [59] Pijning T., Vujičić-Žagar A., Kralj S., Eeuwema W., Dijkhuizen L. & Dijkstra B.W. 2008. Biochemical and crystallographic characterization of a glucansucrase from Lactobacillus reuteri 180. Biocatal. Biotransf. 26: 12–17. http://dx.doi.org/10.1080/10242420701789163CrossrefGoogle Scholar

  • [60] Przylas I., Terada Y., Fujii K., Takaha T., Saenger W. & Sträter N. 2000. X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Eur. J. Biochem. 267: 6903–6913. Google Scholar

  • [61] Quezada-Calvillo R., Sim L., Ao Z., Hamaker B.R., Quaroni A., Brayer G.D., Sterchi E.E., Robayo-Torres C.C, Rose D.R. & Nichols B.L. 2008. Luminal starch substrate “brake” on maltase-glucoamylase activity is located within the glucoamylase subunit. J. Nutr. 138: 685–692. Google Scholar

  • [62] Ragunath C., Manuel S.G.A., Kasinathan C. & Ramasubbu N. 2008. Structure-function relationships in human salivary α-amylase: role of aromatic residues at the secondary binding sites. Biologia 63: 1028–1034. http://dx.doi.org/10.2478/s11756-008-0163-3CrossrefGoogle Scholar

  • [63] Ramasubbu N., Ragunath C. & Mishra P.J. 2003. Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase. J. Mol. Biol. 325: 1061–1076. http://dx.doi.org/10.1016/S0022-2836(02)01326-8CrossrefGoogle Scholar

  • [64] Robert X., Haser R., Gottschalk T.E., Ratajczek F., Driguez H., Svensson B. & Aghajari N. 2003. The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: “a pair of sugar tongs”. Structure 11: 973–984. http://dx.doi.org/10.1016/S0969-2126(03)00151-5CrossrefGoogle Scholar

  • [65] Robert X., Haser R., Mori H., Svensson B. & Aghajari N. 2005. Oligosaccharide binding to barley α-amylase. J. Biol. Chem. 280: 32968–32978. http://dx.doi.org/10.1074/jbc.M505515200CrossrefGoogle Scholar

  • [66] Rodenburg K.W., Vallée F., Juge N., Aghajari N., Guo X.J., Haser R. & Svensson B. 2000. Specific inhibition of barley α-amylase 2 by barley α-amylase/subtilisin inhibitor depends on charge interactions and can be conferred isozyme 1 by mutation. Eur. J. Biochem. 267: 1019–1029. http://dx.doi.org/10.1046/j.1432-1327.2000.01094.xCrossrefGoogle Scholar

  • [67] Saburi W., Hondoh H., Mori H, Okuyama M. & Kimura A. 2007. Structure-function relationship and engineering of dextran glucosidase from Streptococcus mutans, p. 17. In: Janecek S. (ed.), 3rd Symposium on the Alpha-Amylase Family, Programme and Abstracts, Sep 23–27, 2007, Smolenice Castle, Slovakia, Asco Arts & Science, Bratislava. Google Scholar

  • [68] Saburi W., Mori H., Saito S., Okuyama M. & Kimura A. 2006. Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim. Biophys. Acta 1764: 688–698. Google Scholar

  • [69] Shahpiri A., Svensson B. & Finnie C. 2008. The NADPH-dependent thioredoxin reductase/thioredoxin system in germinating barley seeds: gene expression, protein profiles, and interaction between isoforms of thioredoxin h and thioredoxin reductase. Plant Physiol. 146: 789–799. http://dx.doi.org/10.1104/pp.107.113639CrossrefGoogle Scholar

  • [70] Sim L., Quezada-Calvillo R., Sterchi E.E., Nichols B.L. & Rose D.R. 2008. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 375: 782–792. http://dx.doi.org/10.1016/j.jmb.2007.10.069CrossrefGoogle Scholar

  • [71] Svensson B., Fukuda K. Nielsen P.K. & Bønsager B.C. 2004. Proteinaceous α-amylase inhibitors. Biochim. Biophys. Acta 1696: 145–156. Google Scholar

  • [72] Svensson B., Jespersen H., Sierks M.R. & MacGregor E.A. 1989. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J. 264: 309–311. Google Scholar

  • [73] Søgaard M., Kadziola A., Haser R. & Svensson B. 1993. Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley α-amylase 1. J. Biol. Chem. 268: 22480–22484. Google Scholar

  • [74] Søgaard M. & Svensson B. 1990. Expression of cDNAs encoding barley α-amylase 1 and 2 in yeast and characterization of the secreted proteins. Gene 94: 173–179. http://dx.doi.org/10.1016/0378-1119(90)90384-4CrossrefGoogle Scholar

  • [75] Stanley D., Rejzek M., Naested H., Dedola S., Svensson B., Field R.A., Denyer K. & Smith A.M. 2007. Probing the role of α-glucosidase (GH31) in the endosperm of germinating barley (Hordeum vulgare), p. 22. In: Janecek S. (ed.), 3rd Symposium on the Alpha-Amylase Family, Programme and Abstracts, Sep 23–27, 2007, Smolenice Castle, Slovakia, Asco Arts & Science, Bratislava. Google Scholar

  • [76] Turner P., Nilsson C., Svensson D., Holst O., Gorton L. & Nordberg Karlsson E. 2005. Monomeric and dimeric cyclomaltodextrinases reveal different modes of substrate degradation. Biologia 60(Suppl. 16): 79–87. Google Scholar

  • [77] Vallée F., Kadziola A., Bourne Y., Juy M., Rodenburg K.W., Svensson B. & Haser R. 1998. Crystal structure of barley α-amylase complexed with the endogenous protein inhibitor BASI at 1.9 Å resolution. Structure 6: 649–659. http://dx.doi.org/10.1016/S0969-2126(98)00066-5CrossrefGoogle Scholar

  • [78] van Bueren A.L. & Boraston A.B. 2007. The structural basis of α-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima. J. Mol. Biol. 365: 555–560. http://dx.doi.org/10.1016/j.jmb.2006.10.018CrossrefGoogle Scholar

  • [79] van der Kaaij R.M., Janecek S., van der Maarel M.J.E.C. & Dijkhuizen L. 2007a. Phylogenetic and biochemical characterisation of a novel cluster of intracellular fungal α-amylase enzymes. Microbiology 153: 4003–4015. http://dx.doi.org/10.1099/mic.0.2007/008607-0CrossrefGoogle Scholar

  • [80] van der Kaaij R.M., Xuan X.L., Franken A., Ram P.J., Punt P.J., van der Maarel M.J.E.C. & Dijkhuizen L. 2007b. Characeterization of two, novel putatively cell wall associated and GPI-anchored, α-glucanotransferase enzymes of Aspergillus niger. Eukaryot. Cell 6: 1178–1188. http://dx.doi.org/10.1128/EC.00354-06CrossrefGoogle Scholar

  • [81] van Leeuwen S.S., Krajl S., van Geel-Shutten I.H., Gerwig G.J., Dijkhuizen L. & Kamerling J.P. 2008. Structural analysis of the α-D-glucan (EPS180) produced by the Lactobacillus strain 180 glucansucrase GTF180 enzyme. Carbohydr. Res. 343: 1237–1250. http://dx.doi.org/10.1016/j.carres.2008.01.042CrossrefGoogle Scholar

  • [82] Vujicic-Žagar A. & Dijkstra B.W. 2006. Monoclinic crystal form of Aspergillus niger α-amylase in complex with maltose at 1.8 Å resolution. Acta Cryst. F62: 716–721. Google Scholar

  • [83] Yuan X.L., van der Kaaij R.M., van den Hondel C.A., Punt P.J., van der Maarel M.J.E.C., Dijkhuizen L. & Ram A.F. 2008. Aspergillus niger genome-wide analysis reveals a large number of novel α-glucan acting enzymes with unexpected expression profiles. Mol. Genet. Genomics 279: 545–561. http://dx.doi.org/10.1007/s00438-008-0332-7CrossrefGoogle Scholar

  • [84] Zona R., Chang-Pi-Hin F., O’Donohue M.J. & Janecek S. 2004. Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur. J. Biochem. 271: 2863–2872. http://dx.doi.org/10.1111/j.1432-1033.2004.04144.xCrossrefGoogle Scholar

About the article

Published Online: 2008-12-04

Published in Print: 2008-12-01


Citation Information: Biologia, Volume 63, Issue 6, Pages 967–979, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0164-2.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Umi Baroroh, Muhammad Yusuf, Saadah Diana Rachman, Safri Ishmayana, Mas Rizky A. A. Syamsunarno, Jutti Levita, and Toto Subroto
Enzyme Research, 2017, Volume 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in