Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 63, Issue 6

Issues

Mechanisms involved in the biosynthesis of polysaccharides

John Robyt
  • Laboratory of Carbohydrate Chemistry and Enzymology, Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-12-04 | DOI: https://doi.org/10.2478/s11756-008-0168-y

Abstract

The mechanisms for the biosynthesis of three polysaccharides are presented: (i) starch synthesized by starch synthase and adenosine diphospho glucose; (ii) dextran synthesized by Leuconostoc mesenteroides B-512FMC dextransucrase and sucrose; and (iii) Acetobacter xylinum cellulose synthesized by cellulose synthase, uridine diphospho glucose, and bactoprenol phosphate. All three enzymes were pulsed with substrates, containing 14C-glucose and chased with the same nonlabeled substrates. When the polysaccharides were isolated, reduced, and hydrolyzed, the pulsed reactions gave 14C-glucitol, which was significantly decreased in the chase reaction. These experiments definitively show that all three polysaccharides are biosynthesized by the addition of glucose to the reducing-ends of the growing polysaccharides and not by the addition to the nonreducing-ends of primers. Additional evidence indicates that glucose and the polysaccharides are covalently attached to the active-sites of the enzymes. A two catalytic-site insertion mechanism at one active-site is proposed for the biosyntheses. Two of the polysaccharides are α-linked glucans, starch and dextran, and cellulose is a β-linked glucan, known for several years to require a bactoprenol lipid phosphate intermediate. It is shown how this intermediate is involved in determining that β-linkages are synthesized. Other β-linked polysaccharides: bacterial cell wall peptidomurein, Salmonella O-antigen polysaccharide, and Xanthanomonas camprestris xanthan, are heteropolysaccharides, with the later two also being hetero-linked polysaccharides, with the β-linkage at the reducing-end of the repeating unit. All three require bactoprenol lipid phosphate intermediates and are biosynthesized by the addition of the repeating units to the reducing-end of a growing polysaccharide chain, with the formation of a β-linkage.

Keywords: starch; dextran; cellulose; starch synthase; dextransucrase; cellulose synthase; reducing-end synthesis

  • [1] Ball S.G. & Morell M.K. 2003. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Ann. Rev. Plant Biol. 54: 207–233. http://dx.doi.org/10.1146/annurev.arplant.54.031902.134927CrossrefGoogle Scholar

  • [2] Ball S.G., Van de Wal H.B.J.M. & Visser R.G.F. 1998. Progress in understanding the biosynthesis of amylose. Trends Plant Sci. 3: 1360–1385. http://dx.doi.org/10.1016/S1360-1385(98)01342-9CrossrefGoogle Scholar

  • [3] Bocca S.N., Rothschild A. & Tandecarz J.S. 1997. Initiation of starch biosynthesis: purification and characterization of UDP-glucose: protein transglucosylation from potato tubers. Plant Physiol. Biochem. 35: 205–212. Google Scholar

  • [4] Bray D. & Robbins P.W. 1967. The direction of chain growth in Salmonella anatum O-antigen biosynthesis. Biochem. Biophys. Res. Commun. 28: 334–339. http://dx.doi.org/10.1016/0006-291X(67)90314-2CrossrefGoogle Scholar

  • [5] Colvin J.R. 1959. Synthesis of cellulose in ethanol extracts of Acetobacter xylinum. Nature 183: 1135–1137. http://dx.doi.org/10.1038/1831135a0CrossrefGoogle Scholar

  • [6] Copper D. & St. John Manley R. 1975. Evidence for the involvement of a bactoprenol phosphate in bacterial cellulose biosynthesis. Biochim. Biophys. Acta 381: 78–96. Google Scholar

  • [7] Cori G.T. & Cori C.F. 1939. The activating effect of glycogen on the enzymic synthesis of glycogen from glucose-1-phosphate. J. Biol. Chem. 131: 397–398. Google Scholar

  • [8] Damager I., Denyer K., Motawia M.S., Møller B.L. & Blennow A. 2001. The action of starch synthase on 6III — α-maltotriosyl-maltohexaose comprising the branch point of amylopectin. Eur. J. Biochem. 268: 4878–4884. http://dx.doi.org/10.1046/j.1432-1327.2001.02413.xCrossrefGoogle Scholar

  • [9] Dankert M., Wright A., Kelley W.S. & Robbins P.W. 1966. Isolation, purification and properties of the lipid-linked intermediates of O-antigen biosynthesis. Arch. Biochem. Biophys. 116: 425–435. http://dx.doi.org/10.1016/0003-9861(66)90049-XCrossrefGoogle Scholar

  • [10] De Fekete M.A.R., Leloir L.F. & Cardini D.E. 1960. Mechanism of starch biosynthesis. Nature 187: 918–919. http://dx.doi.org/10.1038/187918a0CrossrefGoogle Scholar

  • [11] Denyer K., Waite D., Edwards A., Martin C. & Smith A.M. 1999. Interaction with amylopectin influences the ability of granulebound starch synthase I to elongate malto-oligosaccharides. Biochem. J. 342: 647–653. http://dx.doi.org/10.1042/0264-6021:3420647CrossrefGoogle Scholar

  • [12] Ditson S.L. & Mayer R.M. 1984. Dextransucrase: the direction of chain growth during autopolymerization. Carbohydr. Res. 126: 170–175. http://dx.doi.org/10.1016/0008-6215(84)85135-6CrossrefGoogle Scholar

  • [13] Ebert K.H. & Schenk G. 1968. Mechanisms of biopolymer growth: the formation of dextran and levan. Adv. Enzymol. 30: 179–221. Google Scholar

  • [14] Ewart M.H., Siminovitch D., Briggs D.R. 1954. Possible enzymic processes involved in starch-sucrose interconversions. Plant Physiol. 29: 407–413. Google Scholar

  • [15] Fu D. & Robyt J.F. 1990. Acceptor reactions of maltodextrins with Leuconostoc mesenteroides B-512FM dextransucrase. Arch. Biochem. Biophys. 283: 379–387. http://dx.doi.org/10.1016/0003-9861(90)90658-LCrossrefGoogle Scholar

  • [16] Fu D. & Robyt J.F. 1991. Maltodextrin acceptor reactions with Streptococcus mutans 6715 glucosyltransferases. Carbohydr. Res. 217: 201–211. http://dx.doi.org/10.1016/0008-6215(91)84130-7CrossrefGoogle Scholar

  • [17] Garcia R.C., Recondo E. & Dankert M. 1974. Polysaccharide biosynthesis in Acetobacter xylinum. Enzymatic synthesis of lipid diphosphate and monophosphate sugars. Eur. J. Biochem. 43: 93–105. http://dx.doi.org/10.1111/j.1432-1033.1974.tb03389.xCrossrefGoogle Scholar

  • [18] Haigler C.H. 1991. Relationship between polymerization and crystallization, pp. 99–124. In: Haigler C.H. & Weimer P.J. (eds), Monofibril Biogenesis: Biosynthesis and Biodegradation of Cellulose, Marcel Dekker, New York. Google Scholar

  • [19] Han N.S. & Robyt J.F. 1998. The mechanism of Acetobacter xylinum cellulose biosynthesis: direction of chain elongation and the role of lipid pyrophosphate intermediates in the cell membrane. Carbohydr. Res. 313: 125–133. http://dx.doi.org/10.1016/S0008-6215(98)00253-5CrossrefGoogle Scholar

  • [20] Hanes C.S. 1940. The reversible formation of starch from glucose-1-phosphate catalyzed by potato phosphorylase. Proc. Roy. Soc. B. 129: 174–208. http://dx.doi.org/10.1098/rspb.1940.0035Google Scholar

  • [21] Hepi L., Couso R.O. & Dankert M. 1993. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175: 2490–2500. Google Scholar

  • [22] Koyama M., Helbert W., Imai T., Sugiyama J. & Henrissat B. 1997. Parallel-up structure evidences for the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. USA 94: 9091–9095. http://dx.doi.org/10.1073/pnas.94.17.9091CrossrefGoogle Scholar

  • [23] Leloir L.F., De Fekete M.A.R. & Cardini C.E. 1961. Starch and oligosaccharide synthesis from uridine diphosphate glucose. J. Biol. Chem. 236: 636–641. Google Scholar

  • [24] Liu T.F. & Shannon J.C. 1981. Measurement of metabolites associated with nonaqueously isolated starch granules from immature Zea mays L. endosperm. Plant Physiol. 67: 525–533. Google Scholar

  • [25] Moulis C., Joucla G., Harrison D., Fabre E., Potocki-Veronese G., Monsan P. & Remaud-Simeon M. 2006. Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J. Biol. Chem. 281: 31254–31267. http://dx.doi.org/10.1074/jbc.M604850200CrossrefGoogle Scholar

  • [26] Mukerjea R. & Robyt J.F. 2005. Starch biosynthesis: the primer nonreducing-end mechanism versus the nonprimer reducing-end two-site insertion mechanism. Carbohydr. Res. 340: 245–255. http://dx.doi.org/10.1016/j.carres.2004.11.010CrossrefGoogle Scholar

  • [27] Mukerjea R., Yu L. & Robyt J.F. 2002. Starch biosynthesis: mechanism for the elongation of starch chains. Carbohydr. Res. 337: 1015–1022. http://dx.doi.org/10.1016/S0008-6215(02)00067-8CrossrefGoogle Scholar

  • [28] O’shea M.G., Samuel M.S., Konik C.M., Morell M.K. 1998. Fluophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: efficiency of labeling and high resolution separation. Carbohydr. Res. 307: 1–12. http://dx.doi.org/10.1016/S0008-6215(97)10085-4CrossrefGoogle Scholar

  • [29] Parnaik V.K., Luzio G.A., Grahme D.A., Ditson S.L. & Mayer R.M. 1983. A D-glucosylated form of dextransucrase: preparation and characteristics. Carbohydr. Res. 121: 257–268. http://dx.doi.org/10.1016/0008-6215(83)84022-1CrossrefGoogle Scholar

  • [30] Recondo E. & Leloir L.F. 1961. Adenosine diphosphate glucose and starch synthesis. Biochem. Biophys. Res. Commun. 6: 85–88. http://dx.doi.org/10.1016/0006-291X(61)90389-8CrossrefGoogle Scholar

  • [31] Robbins P.W., Bray D., Dankert M. & Wright A. 1967. Direction of chain growth in polysaccharide synthesis. Science 158: 1536–1542. http://dx.doi.org/10.1126/science.158.3808.1536CrossrefGoogle Scholar

  • [32] Robyt J.F. 1995. Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohydr. Chem. Biochem. 51: 133–168. http://dx.doi.org/10.1016/S0065-2318(08)60193-6CrossrefGoogle Scholar

  • [33] Robyt J.F. & Eklund S.H. 1983. Relative quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 121: 279–286. http://dx.doi.org/10.1016/0008-6215(83)84024-5CrossrefGoogle Scholar

  • [34] Robyt J.F., Kimble B.K. & Walseth T.F. 1974. The mechanism of dextransucrase action: I. Direction of dextran biosynthesis. Arch. Biochem. Biophys. 165: 634–644. http://dx.doi.org/10.1016/0003-9861(74)90291-4CrossrefGoogle Scholar

  • [35] Robyt J.F. & Martin P.J. 1983. Mechanism of synthesis of glucan by glucosyltransferaeses from Streptococcus mutans 6715. Carbohydr. Res. 113: 301–315. http://dx.doi.org/10.1016/0008-6215(83)88245-7CrossrefGoogle Scholar

  • [36] Robyt J.F. & Taniguchi H. 1976. The mechanism of dextransucrase action: II. Biosynthesis of branch linkages by acceptor reactions with dextran. Carbohydr. Res. 174: 129–137. Google Scholar

  • [37] Robyt J.F. & Walseth T.F. 1978. The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 61: 433–444. http://dx.doi.org/10.1016/S0008-6215(00)84503-6CrossrefGoogle Scholar

  • [38] Robyt J.F., Yoon S.H. & Mukerjea R. 2008. On the mechanism of the synthesis of B-512F dextran by Leuconostoc mesenteroides B-512FMC dextransucrase. Carbohydr. Res. (submitted). Google Scholar

  • [39] Saxena I.M., Brown, Jr. R.M., Fevre M., Geremia R.A. & Henrissat B. 1995. Multidomain architecture of β-glycosyltransferase: implications for mechanism of action. J. Bacteriol. 177: 1419–1424. Google Scholar

  • [40] Su D. & Robyt J.F. 1993. Control of the synthesis of dextran and acceptor-products by Leuconostoc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 339–348. http://dx.doi.org/10.1016/0008-6215(93)84139-WCrossrefGoogle Scholar

  • [41] Su D. & Robyt J.F. 1994. Determination of the number of sucrose and acceptor binding sites for Leuconsotoc mesenteroides B-512FM dextransucrase and confirmation of the two-site mechanism for dextran synthesis. Arch. Biochem. Biophys. 308: 471–476. http://dx.doi.org/10.1006/abbi.1994.1067CrossrefGoogle Scholar

  • [42] Swanson M.A. & Cori C.F. 1948. Structure of polysaccharides: III. Relation of structure to activation of phosphorylases. J. Biol. Chem. 172: 815–824. Google Scholar

  • [43] Swissa M., Aloni Y., Weinhouse H. & Benziman M. 1980. Intermediary steps in Acetobacter xylinum cellulose synthesis: studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant. J. Bacteriol. 143: 1142–1150. Google Scholar

  • [44] Tomlinson K. & Denyer K. 2003. Starch synthesis in cereal grains. Adv. Bot. Res. 40: 1–61. http://dx.doi.org/10.1016/S0065-2296(05)40001-4CrossrefGoogle Scholar

  • [45] Trevelyan W.E., Mann P.F.E. & Harrison J.S. 1952. The phosphorylase reaction. I. Equilibrium constant: principles and preliminary survey. Arch. Biochem. Biophys. 39: 419–427. http://dx.doi.org/10.1016/0003-9861(52)90351-2CrossrefGoogle Scholar

  • [46] Ward J.B. & Perkins H.R. 1973. The direction of glycan synthesis in a bacterial peptidoglycan. Biochem. J. 135: 721–728. Google Scholar

  • [47] Wright A., Dankert M., Fennessey P. & Robbins P.W. 1967. Characterization of a polyisoprenoid compound functional in O-antigen biosynthesis. Proc. Natl. Acad. Sci. USA 57: 1798–1803. http://dx.doi.org/10.1073/pnas.57.6.1798CrossrefGoogle Scholar

  • [48] Yoon S.H., Fulton D.B. & Robyt J.F. 2004. Enzymatic synthesis of two salicin analogues by reaction of salicyl alcohol with Bacillus macerans cyclomaltodextrin glucanyltransferase and Leuconostoc mesenteroides B-742CB dextransucrase. Carbohydr. Res. 339: 1517–1529. http://dx.doi.org/10.1016/j.carres.2004.03.018CrossrefGoogle Scholar

  • [49] Yoon S.H. & Robyt J.F. 2002. Bacillus macerans cyclomaltodextrin glucanotransferase reactions with different ratios of D-glucose and cyclomaltohexaose. Carbohydr. Res. 337: 2245–2254. http://dx.doi.org/10.1016/S0008-6215(02)00224-0CrossrefGoogle Scholar

About the article

Published Online: 2008-12-04

Published in Print: 2008-12-01


Citation Information: Biologia, Volume 63, Issue 6, Pages 980–988, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0168-y.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Angus Gray-Weale and Robert G. Gilbert
Journal of Polymer Science Part A: Polymer Chemistry, 2009, Volume 47, Number 15, Page 3914

Comments (0)

Please log in or register to comment.
Log in