Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 63, Issue 6


Amylase action pattern on starch polymers

Annabel Bijttebier
  • Laboratory of Food Chemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans Goesaert
  • Laboratory of Food Chemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Delcour
  • Laboratory of Food Chemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-12-04 | DOI: https://doi.org/10.2478/s11756-008-0169-x


Several decades ago, the first reports on differences in action pattern between amylases from different sources indicated that the starch polymers are not degraded in a completely random manner. We here give an overview of different action patterns of amylases on amylose and amylopectin, focusing on the so-called multiple attack action of the enzymes. Nowadays, the multiple attack action is generally an accepted concept to explain the differences in amylase action pattern. However, the pancreatic α-amylase remains one of the few enzymes known with a considerable level of multiple attack action. Despite some recent studies, the molecular mechanism of the multiple attack action is still largely unclear. Probably, the degree to which the active site architecture and binding properties allow both the reorganization (sliding) of the substrate in the active site and the stabilisation of the productive enzyme/substrate complex mainly determine the multiple attack action of amylases.

Keywords: amylase; amylose; amylopectin; action pattern; multiple attack action

  • [1] Abdullah M., French D. & Robyt J.F. 1966. Multiple attack by α-amylases. Arch. Biochem. Biophys. 114: 595–598. http://dx.doi.org/10.1016/0003-9861(66)90385-7CrossrefGoogle Scholar

  • [2] Allen J.D. & Thoma J.A. 1978. Repetitive attack by Aspergillus oryzae α-amylase. Carbohyd. Res. 61: 377–385. http://dx.doi.org/10.1016/S0008-6215(00)84497-3CrossrefGoogle Scholar

  • [3] Atichokudomchai N., Jane J.L. & Hazlewood G. 2006. Reaction pattern of a novel thermostable α-amylase. Carbohydr. Polym. 64: 582–588. http://dx.doi.org/10.1016/j.carbpol.2005.11.014CrossrefGoogle Scholar

  • [4] Azhari R. & Lotan N. 1991. Enzymic hydrolysis of biopolymers via single-scission attack pathways: a unified kinetic model. J. Mater. Sci. Mater. Med. 2: 9–18. http://dx.doi.org/10.1007/BF00701682CrossrefGoogle Scholar

  • [5] Bailey J.M. & French D. 1957. The significance of multiple reactions in enzyme-polymer systems. J. Biol. Chem. 226: 1–14. Google Scholar

  • [6] Bailey J.M. & Whelan W.J. 1957. Mechanism of carbohydrase action 3. Action pattern of β-amylase. Biochem. J. 67: 540–547. Google Scholar

  • [7] Bailey J.M. & Whelan W.J. 1961. Physical properties of starch I. Relationship between iodine stain and chain length. J. Biol. Chem. 236: 969–972. Google Scholar

  • [8] Banks W. & Greenwood C.T. 1977. Mathematical models for action of α-amylase on amylose. Carbohydr. Res. 57: 301–315. http://dx.doi.org/10.1016/S0008-6215(00)81939-4CrossrefGoogle Scholar

  • [9] Banks W., Greenwood C.T. & Khan K.M. 1970. Studies on starch-degrading enzymes Part XII. The initial stages of the action on amylose of the α-amylases from B. subtilis, human saliva, malted rye, and porcine pancreas. Carbohydr. Res. 12: 79–87. http://dx.doi.org/10.1016/S0008-6215(00)80227-XCrossrefGoogle Scholar

  • [10] Banks W., Greenwood C.T. & Khan K.M. 1971. Physicochemical studies on starches 56. The interaction of linear amylose oligomers with iodine. Carbohydr. Res. 17: 25–33. http://dx.doi.org/10.1016/S0008-6215(00)81539-6CrossrefGoogle Scholar

  • [11] Bertoft E. 1989. Investigation of the fine-structure of amylopectin using α-amylase and β-amylase. Carbohydr. Res. 189: 195–207. http://dx.doi.org/10.1016/0008-6215(89)84097-2CrossrefGoogle Scholar

  • [12] Bijttebier A., Goesaert H. & Delcour J.A. 2007a. Temperature impacts the multiple attack action of amylases. Biomacromolecules 8: 765–772. http://dx.doi.org/10.1021/bm060784uCrossrefGoogle Scholar

  • [13] Bijttebier A., Goesaert H. & Delcour J.A. 2007b. Action pattern of different amylases on amylose and amylopectin, p. 52. In: Janecek S. (ed.), 3rd Symposium on the Alpha-Amylase Family, Programme and Abstracts, Sep 23–27, 2007, Smolenice Castle, Slovakia, Asco Arts & Science, Bratislava. Google Scholar

  • [14] Bird R. & Hopkins R. H. 1954. The action of some α-amylases on amylose. Biochem. J. 56: 86–99. Google Scholar

  • [15] Bowles L.K. 1996. Amylolytic enzymes, pp. 105–129. In: Hebeda E.H. & Zobel H.F. (eds), Baked Goods Freshness: Technology, Evaluation and Inhibition of Staling, Marcel Dekker Inc., New York. Google Scholar

  • [16] Bozonnet S., Kim T.J., Bonsager B.C., Kramhøft B., Nielsen P.K., Bak-Jensen K.S. & Svensson B. 2003. Engineering of barley α-amylase. Biocatal. Biotransform. 21: 209–214. http://dx.doi.org/10.1080/10242470310001618564CrossrefGoogle Scholar

  • [17] Breyer W.A. & Matthews B.W. 2001. A structural basis for processivity. Protein Sci. 10: 1699–1711. http://dx.doi.org/10.1110/ps.10301CrossrefGoogle Scholar

  • [18] Buléon A., Colonna P., Planchot V. & Ball S. 1998. Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23: 85–112. http://dx.doi.org/10.1016/S0141-8130(98)00040-3CrossrefGoogle Scholar

  • [19] Christophersen C., Otzen D.E., Norman B.E., Christensen S. & Schäfer T. 1998. Enzymatic characterisation of Novamyl, a thermostable α-amylase. Starch/Stärke 50: 39–45. http://dx.doi.org/10.1002/(SICI)1521-379X(199801)50:1<39::AID-STAR39>3.0.CO;2-SCrossrefGoogle Scholar

  • [20] Coutinho P.M. & Henrissat B. 1999. Carbohydrate-active enzymes: an integrated database approach, pp 3–12. In: Gilbert H.J., Davies G., Henrissat B. & Svensson B. (eds), Recent Advances in Carbohydrate Bioengineering, The Royal Society of Chemistry, Cambridge; URL: http://www.cazy.org. Google Scholar

  • [21] Dauter Z., Dauter M., Brzozowski A.M., Christensen S., Borchert T.V., Beier L., Wilson K.S. & Davies G.J. 1999. X-ray structure of Novamyl, the five-domain “Maltogenic” α-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7 Å resolution. Biochemistry 38: 8385–8392. http://dx.doi.org/10.1021/bi990256lCrossrefGoogle Scholar

  • [22] Davies G.J., Wilson K.S. & Henrissat B. 1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321: 557–559. Google Scholar

  • [23] Denyer K., Waite D., Motawia S., Moller B.L. & Smith A.M. 1999. Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochem. J. 340: 183–191. http://dx.doi.org/10.1042/0264-6021:3400183CrossrefGoogle Scholar

  • [24] Gupta R., Gigras P., Mohapatra H., Goswami V.K. & Chauhan B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599–1616. http://dx.doi.org/10.1016/S0032-9592(03)00053-0CrossrefGoogle Scholar

  • [25] Hanes C.S. 1937. The action of amylases in relation to the structure of starch and its metabolism in the plant. Parts IV–VII. New Phytol. 36: 189–282. http://dx.doi.org/10.1111/j.1469-8137.1937.tb06913.xCrossrefGoogle Scholar

  • [26] Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316. Google Scholar

  • [27] Henrissat B. & Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637–644. http://dx.doi.org/10.1016/S0959-440X(97)80072-3CrossrefGoogle Scholar

  • [28] Hizukuri S. 1986. Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydr. Res. 147: 342–347. http://dx.doi.org/10.1016/S0008-6215(00)90643-8CrossrefGoogle Scholar

  • [29] Hizukuri S. 1996. Starch: analytical aspects, pp. 347–429. In: Eliasson A.C. (ed.), Carbohydrates in Food, Marcel Dekker, New York. Google Scholar

  • [30] Hizukuri S., Takeda Y. & Yasuda M. 1981. Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr. Res. 94: 205–213. http://dx.doi.org/10.1016/S0008-6215(00)80718-1CrossrefGoogle Scholar

  • [31] Hoseney R.C. 1994. Starch, pp. 29–64. In: Principles of Cereal Science and Technology, American Association of Cereal Chemists, St. Paul, MN. Google Scholar

  • [32] Hutny J. & Ugorski M. 1981. Kinetics of hog pancreas α-amylase, development of the multiple attack model. Arch. Biochem. Biophys. 206: 29–42. http://dx.doi.org/10.1016/0003-9861(81)90062-XCrossrefGoogle Scholar

  • [33] Iefuji H., Chino M., Kato M. & Iimura Y. 1996. Raw-starchdigesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem. J. 318: 989–996. Google Scholar

  • [34] Ishikawa K., Matsui I., Honda K., Kobayashi S. & Nakatani H. 1991. The pH dependence of the action pattern in porcine pancreatic α-amylase catalyzed reaction for maltooligosaccharide substrates. Arch. Biochem. Biophys. 289: 124–129. http://dx.doi.org/10.1016/0003-9861(91)90451-NCrossrefGoogle Scholar

  • [35] Ishikawa K., Nakatani H., Katsuya Y. & Fukazawa C. 2007. Kinetic and structural analysis of enzyme sliding on a substrate: multiple attack in β-amylase. Biochemistry 46: 792–798. http://dx.doi.org/10.1021/bi061605wCrossrefGoogle Scholar

  • [36] Jane J., Chen Y.Y., Lee L.F., McPherson A.E., Wong K.S., Radosavljevic M. & Kasemsuwan T. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76: 629–637. http://dx.doi.org/10.1094/CCHEM.1999.76.5.629CrossrefGoogle Scholar

  • [37] Janecek S. & Sevick J. 1999. The evolution of starch-binding domain. FEBS Lett. 456: 119–125. http://dx.doi.org/10.1016/S0014-5793(99)00919-9CrossrefGoogle Scholar

  • [38] Jespersen H.M., MacGregor E.A., Sierks M.R. & Svensson B. 1991. Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem. J. 280: 51–55. Google Scholar

  • [39] Juge N., Nohr J., Le Gal-Coeffet M.F., Kramhøft B., Furniss C.S.M., Planchot V., Archer D.B., Williamson G. & Svensson B. 2006. The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochim. Biophys. Acta 1764: 275–284. Google Scholar

  • [40] Kandra L., Gyemant G., Farkas E. & Liptak A. 1997. Action pattern of porcine pancreatic α-amylase on three different series of β-maltooligosaccharide glycosides. Carbohydr. Res. 298: 237–242. http://dx.doi.org/10.1016/S0008-6215(96)00310-2CrossrefGoogle Scholar

  • [41] Kelman Z., Hurwitz J. & O’Donnell M. 1998. Processivity of DNA polymerases: two mechanisms, one goal. Structure 6: 121–125. http://dx.doi.org/10.1016/S0969-2126(98)00014-8CrossrefGoogle Scholar

  • [42] Klein B. & Foreman J.A. 1980. Amylolysis of a chromogenic substrate, Cibachron Blue F3GA-amylose: kinetics and mechanism. Clin. Chem. 26: 250–253. Google Scholar

  • [43] Kragh K.M. 2002. Amylases in baking, pp. 221–226. In: Courtin C.M., Veraverbeke W.S. & Delcour J.A. (eds), Recent Advances in Enzymes in Grain Processing, Laboratory of Food Chemistry, K.U. Leuven, Leuven. Google Scholar

  • [44] Kramhøft B., Bak-Jensen K.S., Mori H., Juge N., Nohr J. & Svensson B. 2005. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley α-amylase. Biochemistry 44: 1824–1832. http://dx.doi.org/10.1021/bi048100vCrossrefGoogle Scholar

  • [45] Kramhøft B. & Svensson B. 1998. Effect of temperature and Ca2+ on the degree of multiple attack exhibited by mesophilic and thermophilic α-amylases pp. 343–347. In: Ballasteros A., Plou F.J., Iborra J.L. & Halling P.J. (eds), Progress in Biotechnology 15, Stability and Stabilization of Biocatalysts, Elsevier, Amsterdam. Google Scholar

  • [46] Kuriki T. & Imanaka T. 1999. The concept of the α-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557–565. http://dx.doi.org/10.1016/S1389-1723(99)80114-5CrossrefGoogle Scholar

  • [47] Leman P., Goesaert H., Vandeputte G.E., Lagrain B. & Delcour J.A. 2005. Maltogenic amylase had a non-typical impact on the molecular and rheological properties of starch. Carbohydr. Polym. 62: 205–213. http://dx.doi.org/10.1016/j.carbpol.2005.02.023CrossrefGoogle Scholar

  • [48] MacGregor E.A. 1993. Relationships between structure and activity in the α-amylase family of starch-metabolizing enzymes. Starch/Stärke 45: 232–237. http://dx.doi.org/10.1002/star.19930450705CrossrefGoogle Scholar

  • [49] Manners D.J. 1979. The enzymatic degradation of starches, pp. 5–91. In: Blanshard J.M.V. & Mitchell J.R. (eds), Polysaccharides in Food, Butterworths, London. Google Scholar

  • [50] Marchal L.M., van de Laar A.M.J., Goetheer E., Schimmelpennink E.B., Bergsma J., Beeftink H.H. & Tramper J. 1999. Effect of temperature on the saccharide composition obtained after α-amylolysis of starch. Biotechnol. Bioeng. 63: 344–355. http://dx.doi.org/10.1002/(SICI)1097-0290(19990505)63:3<344::AID-BIT11>3.0.CO;2-9CrossrefGoogle Scholar

  • [51] Mazur A.K. & Nakatani H. 1993. Multiple attack mechanism in the porcine pancreatic α-amylase hydrolysis of amylose and amylopectin. Arch. Biochem. Biophys. 306: 29–38. http://dx.doi.org/10.1006/abbi.1993.1476CrossrefGoogle Scholar

  • [52] Mukerjea R., Slocum G., Mukerjea R. & Robyt J.F. 2006. Significant differences in the activities of α-amylases in the absence and presence of polyethylene glycol assayed on eight starches solubilized by two methods. Carbohydr. Res. 341: 2049–2054. http://dx.doi.org/10.1016/j.carres.2006.05.009CrossrefGoogle Scholar

  • [53] Nakatani H. 1996. Monte Carlo simulation of multiple attack mechanism of α-amylase. Biopolymers 39: 665–669. http://dx.doi.org/10.1002/(SICI)1097-0282(199611)39:5<665::AID-BIP5>3.0.CO;2-UCrossrefGoogle Scholar

  • [54] Norouzian D., Akbarzadeh A., Scharer J.M. & Young M.M. 2006. Fungal glucoamylases. Biotechnol. Adv. 24: 80–85. http://dx.doi.org/10.1016/j.biotechadv.2005.06.003CrossrefGoogle Scholar

  • [55] Outtrup H. & Norman B.E. 1984. Properties and application of a thermostable maltogenic amylase produced by a strain of Bacillus modified by recombinant-DNA techniques. Starch/Stärke 36: 405–411. http://dx.doi.org/10.1002/star.19840361202CrossrefGoogle Scholar

  • [56] Pazur J.H. & Ando T. 1960. The hydrolysis of glucosyl oligosaccharides with α-D-(1,4) and α-D-(1,6) bonds by fungal amyloglucosidase. J. Biol. Chem. 235: 297–302. Google Scholar

  • [57] Qian M.X., Haser R. & Payan F. 1995. Carbohydrate binding sites in a pancreatic α-amylase-substrate complex, derived from X-ray structure analysis at 2.1 Å resolution. Protein Sci. 4: 747–755. Google Scholar

  • [58] Robyt J.F. & French D. 1963. Action pattern and specificity of an amylase from Bacillus subtilis. Arch. Biochem. Biophys. 100: 451–467. http://dx.doi.org/10.1016/0003-9861(63)90112-7CrossrefGoogle Scholar

  • [59] Robyt J.F. & French D. 1967. Multiple attack hypothesis of α-amylase action: action of porcine pancreatic, human salivary, and Aspergillus oryzae α-amylases. Arch. Biochem. Biophys. 122: 8–16. http://dx.doi.org/10.1016/0003-9861(67)90118-XCrossrefGoogle Scholar

  • [60] Robyt J.F. & French D. 1970. Multiple attack and polarity of action of porcine pancreatic α-amylase. Arch. Biochem. Biophys. 138: 662–670. http://dx.doi.org/10.1016/0003-9861(70)90394-2CrossrefGoogle Scholar

  • [61] Sauer J., Sigurskjold B.W., Christensen U., Frandsen T.P., Mirgorodskaya E., Harrison M., Roepstorff P. & Svensson B. 2000. Glucoamylase: structure/function relationships, and protein engineering. Biochim. Biophys. Acta 1543: 275–293. Google Scholar

  • [62] Singh N., Singh J., Kaur L., Sodhi N.S. & Gill B.S. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81: 219–231. http://dx.doi.org/10.1016/S0308-8146(02)00416-8CrossrefGoogle Scholar

  • [63] Song Y. & Jane J. 2000. Characterization of barley starches of waxy, normal and high amylose varieties. Carbohydr. Polym. 41: 365–377. http://dx.doi.org/10.1016/S0144-8617(99)00098-3CrossrefGoogle Scholar

  • [64] Stam M.R., Danchin E.G.J., Rancurel C., Coutinho P.M. & Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19: 555–562. http://dx.doi.org/10.1093/protein/gzl044CrossrefGoogle Scholar

  • [65] Svensson B., Jensen M.T., Mori H., Bak-Jensen K.S., Bonsager B., Nielsen P.K., Kramhøft B., Praetorius-Ibba M., Nohr J., Juge N., Greffe L., Williamson G. & Driguez H. 2002. Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia 57(Suppl. 11): 5–19. Google Scholar

  • [66] Swanson M.A. 1948. Studies on the structure of polysaccharides II. Degradation of polysaccharides by enzymes. J. Biol. Chem. 172: 805–814. Google Scholar

  • [67] Thoma J.A. 1976. Models for depolymerizing enzymes — criteria for discrimination of models. Carbohydr. Res. 48: 85–103. http://dx.doi.org/10.1016/S0008-6215(00)83517-XCrossrefGoogle Scholar

  • [68] van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137–155. http://dx.doi.org/10.1016/S0168-1656(01)00407-2CrossrefGoogle Scholar

  • [69] van Pouderoyen G., Snijder H.J., Benen J.A.E. & Dijkstra B.W. 2003. Structural insights into the processivity of endopoly-galacturonase I from Aspergillus niger. FEBS Lett. 554: 462–466. http://dx.doi.org/10.1016/S0014-5793(03)01221-3CrossrefGoogle Scholar

  • [70] Withers S.G. & Aebersold R. 1995. Approaches to labeling and identification of active site residues in glycosidases. Protein Sci. 4: 361–372. http://dx.doi.org/10.1002/pro.5560040302CrossrefGoogle Scholar

  • [71] Zobel H.F. 1988. Molecules to granules: a comprehensive review. Starch/Stärke 40: 1–7. http://dx.doi.org/10.1002/star.19880400102CrossrefGoogle Scholar

About the article

Published Online: 2008-12-04

Published in Print: 2008-12-01

Citation Information: Biologia, Volume 63, Issue 6, Pages 989–999, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-008-0169-x.

Export Citation

© 2008 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

S. Reyniers, N. Vluymans, N. De Brier, N. Ooms, S. Matthijs, K. Brijs, and J.A. Delcour
Food Hydrocolloids, 2020, Page 105658
Alicia Sanchez-Gorostiaga, Djordje Bajić, Melisa L. Osborne, Juan F. Poyatos, Alvaro Sanchez, and Wenying Shou
PLOS Biology, 2019, Volume 17, Number 12, Page e3000550
Marcia Maria de Souza Moretti, Wenwen Yu, Wei Zou, Célia Maria Landi Franco, Liliane Lazzari Albertin, Peer M. Schenk, and Robert G. Gilbert
International Journal of Biological Macromolecules, 2019, Volume 139, Page 244
Flávia Villas-Boas, Yasmin Yamauti, Marcia M.S. Moretti, and Celia M.L. Franco
Carbohydrate Research, 2019, Volume 479, Page 23
Gregory Arnal, Darrell W. Cockburn, Harry Brumer, and Nicole M. Koropatkin
Protein Science, 2018
H. Douglas Goff, Nikolay Repin, Hrvoje Fabek, Dalia El Khoury, and Michael J. Gidley
Bioactive Carbohydrates and Dietary Fibre, 2017
Marta Martinez-Garcia, Akrivi Kormpa, and Marc J.E.C. van der Maarel
Carbohydrate Polymers, 2017, Volume 169, Page 75
Nikolay Repin, Steve W. Cui, and H. Douglas Goff
Bioactive Carbohydrates and Dietary Fibre, 2016
Waraporn Sorndech, Domenico Sagnelli, Sebastian Meier, Anita M. Jansson, Byung-Hoo Lee, Bruce R. Hamaker, Agnès Rolland-Sabaté, Kim H. Hebelstrup, Sunanta Tongta, and Andreas Blennow
Carbohydrate Polymers, 2016, Volume 152, Page 51
Jenny Pena Dias, Jennifer A. Schrack, Michelle D. Shardell, Josephine M. Egan, and Stephanie Studenski
Diabetes Research and Clinical Practice, 2016, Volume 116, Page 212
Masahiro Kamon, Jun-ichi Sumitani, Shuji Tani, Takashi Kawaguchi, M. Kamon, J. Sumitani, S. Tani, and T. Kawaguchi
Applied Microbiology and Biotechnology, 2015, Volume 99, Number 11, Page 4743
Haradhan Kolya and Tridib Tripathy
International Journal of Biological Macromolecules, 2014, Volume 70, Page 26
Haradhan Kolya and Tridib Tripathy
European Polymer Journal, 2013, Volume 49, Number 12, Page 4265
Hardeep Singh Gujral, Paras Sharma, Harprabhdeep Kaur, and Jaspreet Singh
International Journal of Food Properties, 2013, Volume 16, Number 7, Page 1494
Frank Vriesekoop, Andrew Rathband, Jim MacKinlay, and James H. Bryce
Journal of the Institute of Brewing, 2010, Volume 116, Number 3, Page 230
Nelson P. Guerra and Lorenzo Pastrana Castro
The Scientific World Journal, 2012, Volume 2012, Page 1
L.J. Derde, S.V. Gomand, C.M. Courtin, and J.A. Delcour
Food Chemistry, 2012, Volume 135, Number 2, Page 713
François Delavat, Vincent Phalip, Anne Forster, Frédéric Plewniak, Marie-Claire Lett, and Didier Lièvremont
Scientific Reports, 2012, Volume 2, Number 1
Hans Goesaert, Annabel Bijttebier, and Jan A. Delcour
Carbohydrate Research, 2010, Volume 345, Number 3, Page 397
Annabel Bijttebier, Hans Goesaert, and Jan A. Delcour
Carbohydrate Research, 2010, Volume 345, Number 2, Page 235
Yoshiro Kaneko, Kazuya Fujisaki, Tsuyoshi Kyutoku, Hidemitsu Furukawa, and Jun-ichi Kadokawa
Chemistry - An Asian Journal, 2010, Volume 5, Number 7, Page 1627

Comments (0)

Please log in or register to comment.
Log in