Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 64, Issue 2


Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere

Govindan Selvakumar / Piyush Joshi / Sehar Nazim / Pankaj Mishra / Jaideep Bisht / Hari Gupta
Published Online: 2009-02-20 | DOI: https://doi.org/10.2478/s11756-009-0041-7


Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude garlic rhizosphere from the Indian Himalayas, are reported here. The identity of the isolate was arrived on the basis of its biochemical features and sequencing of the 16S rRNA gene. The isolate grew and solubilized phosphate at temperatures ranging from 4 to 30°C. Besides solubilizing P it produced indole acetic acid (IAA) and hydrogen cyanide (HCN). Seed bacterization with the isolate significantly increased the percent germination, rate of germination, plant biomass and nutrient uptake of wheat seedlings. While Pseudomonas fragi is normally associated with the spoilage of dairy products stored at cold temperatures, this is an early report on the plant growth promoting ability of the bacterium.

Keywords: psychrotolerant; Pseudomonas fragi; phosphate solubilization; plant growth promotion

  • [1] Ali Z., O’Hare W.T. & Theaker B.J. 2003. Detection of bacterial contaminated milk by means of a quartz crystal microbalance based electronic nose. J. Therm. Anal. Calorim. 71: 155–161. http://dx.doi.org/10.1023/A:1022274419166CrossrefGoogle Scholar

  • [2] Alquati C., De Gioia L., Santarossa G., Alberghina L., Fantucci P. & Lotti M. 2002. The cold-active lipase of Pseudomonas fragi heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem. 269: 3321–3328. http://dx.doi.org/10.1046/j.1432-1033.2002.03012.xCrossrefGoogle Scholar

  • [3] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410. CrossrefGoogle Scholar

  • [4] Asea P.E.A., Kucey R.M.N. & Stewart J.W.B. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20: 459–464. http://dx.doi.org/10.1016/0038-0717(88)90058-2CrossrefGoogle Scholar

  • [5] Atlas R.M. 1995. The Handbook of Microbiological Media for the Examination of Food. CRC Press, Boca Raton, 197 pp. Google Scholar

  • [6] Bakker A.W. & Schipper B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol. Biochem. 19: 451–457. http://dx.doi.org/10.1016/0038-0717(87)90037-XCrossrefGoogle Scholar

  • [7] Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A. & Young C.C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33–41. http://dx.doi.org/10.1016/j.apsoil.2005.12.002CrossrefGoogle Scholar

  • [8] Chung H., Par M., Madhaiyan M., Seshadri S., Song J., Cho H. & Sa T. 2005. Isolation and characterization of phosphate solubilization bacteria from the rhizosphere of crop plant of Korea. Soil Biol. Biochem. 37: 1970–1974. http://dx.doi.org/10.1016/j.soilbio.2005.02.025CrossrefGoogle Scholar

  • [9] Collins C.H. & Lyne P.M. 1980. Microbiological Methods. Butterworth and Co., Ltd., London. Google Scholar

  • [10] Di Simine C.D., Sayer J.A. & Gadd G.M. 1998. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol. Fertil. Soils 28: 87–94. http://dx.doi.org/10.1007/s003740050467CrossrefGoogle Scholar

  • [11] Elliot L.F. & Lynch J.M. 1984. Pseudomonas as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem 16: 69–71. http://dx.doi.org/10.1016/0038-0717(84)90128-7CrossrefGoogle Scholar

  • [12] Fernandez L.A., Zalba P., Gomez M.A. & Sagardoy M.A. 2007. Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol. Fertil. Soils 43: 805–809. http://dx.doi.org/10.1007/s00374-007-0172-3CrossrefGoogle Scholar

  • [13] Gaind S. & Gaur A.C. 1991. Thermotolerent phosphate solubilizing microorganisms and their interaction with mung-bean. Plant Soil 133: 141–149. http://dx.doi.org/10.1007/BF00011908CrossrefGoogle Scholar

  • [14] Goldstein A. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol. Agric. Hortic. 12: 185–193. CrossrefGoogle Scholar

  • [15] Gordon A.S. & Weber R.P. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26: 192–195. http://dx.doi.org/10.1104/pp.26.1.192CrossrefGoogle Scholar

  • [16] Gulati A., Rahi P. & Vyas P. 2008. Characterization of phosphate-solubilizing fluorescent Pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr. Microbiol. 56: 73–79. http://dx.doi.org/10.1007/s00284-007-9042-3CrossrefGoogle Scholar

  • [17] Hameeda B., Rupela O.P. & Reddy G. 2006. Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of pearl millet (Pennisetum glaucum L.). Biol. Fertil. Soils 43: 221–227. http://dx.doi.org/10.1007/s00374-006-0098-1CrossrefGoogle Scholar

  • [18] Holland M.A. 1997. Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol. 115: 865–868. Google Scholar

  • [19] Hosseini S.Z. & Jafari M. 2002. Investigation on effect of salinity stress on germination of three accessions of tall wheat grass (Agropyron elongatum). Paper No. 2289, 17th World Congress on Soil Science, 14–21 August 2002, Thailand. Google Scholar

  • [20] Hwangbo H., Park R.D., Kim Y.W., Rim Y.S., Park K.H., Kim T.H., Suh J.S. & Kim K.Y. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47: 87–92. http://dx.doi.org/10.1007/s00284-002-3951-yGoogle Scholar

  • [21] Jackson M.L. 1973. Soil Chemical Analysis. Prentice Hall, Ltd., New Delhi. Google Scholar

  • [22] Jones D.L. & Darrah P.R. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166: 247–257. http://dx.doi.org/10.1007/BF00008338CrossrefGoogle Scholar

  • [23] Katiyar V. & Goel R. 2003. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol. Res. 158: 163–168. http://dx.doi.org/10.1078/0944-5013-00188CrossrefGoogle Scholar

  • [24] Khalid A., Arshad M. & Zahir Z.A. 2004. Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473–480. http://dx.doi.org/10.1046/j.1365-2672.2003.02161.xCrossrefGoogle Scholar

  • [25] Kim K.Y., Hwangbo H, Kim Y.W., Kim H.J., Park K.H., Kim Y.C. & Seoung K.Y. 2002.Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G. Korean J. Soil Sci. Fert. 35: 59–67. Google Scholar

  • [26] Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120. http://dx.doi.org/10.1007/BF01731581CrossrefGoogle Scholar

  • [27] Kloepper J.W., McInroy J.A. & Bowen K.L. 1992. Comparative identification by fatty acid analysis of soil, rhizosphere and geocarposphere bacteria of peanut (Arachis hypogaea L.). Plant Soil 139: 85–90. http://dx.doi.org/10.1007/BF00012845CrossrefGoogle Scholar

  • [28] Kremer R.J. & Souissi T. 2001. Cyanide production by rhizobacteria and potential for suppression of wheat seedling growth. Curr. Microbiol. 43: 182–186. http://dx.doi.org/10.1007/s002840010284CrossrefGoogle Scholar

  • [29] Kumar S., Tamura K. & Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150–163. http://dx.doi.org/10.1093/bib/5.2.150CrossrefGoogle Scholar

  • [30] Lambers H. 1982. Cyanide-resistant respiration: a non phosphorylating electron transport pathway acts as an energy over-flow. Physiol. Plant 55: 478–485. http://dx.doi.org/10.1111/j.1399-3054.1982.tb04530.xCrossrefGoogle Scholar

  • [31] Lebert I., Begot C. & Lebert A. 1998. Growth of Pseudomonas fluorescens and Pseudomonas fragi in a meat medium as affected by pH (5.8–7.0), water activity (0.97–1.00) and temperature (7–25 °C). Int. J. Food Microbiol. 39: 53–60. http://dx.doi.org/10.1016/S0168-1605(97)00116-5Google Scholar

  • [32] Lifshitz R., Kloepper J.W., Kozlowski M., Simonson C., Carlson J., Tipping E.N. & Zaleska I. 1987. Growth promotion of canola (rape-seed) seedlings by a strain of Peudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 8: 102–106. Google Scholar

  • [33] Martin L., Velazquez E., Rivas R., Mateos P.F., Martinez-Molina E., Rodriguez-Barrueco C. & Peix A. 2003. Effect of inoculation with a strain of Pseudomonas fragi on the growth and phosphorus content of strawberry plants, pp. 309–315. In: Velazquez E. & Rodriguez-Barrueco C. (eds), First International Meeting on Microbial Phosphate Solubilization (19–22 July 2002, Salamanca, Spain), Springer, The Netherlands. Google Scholar

  • [34] Mehta S. & Nautiyal C.S. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43: 51–56. http://dx.doi.org/10.1007/s002840010259CrossrefGoogle Scholar

  • [35] Murphy J.P. & Riley J.P. 1962. A modified single solution method for the determination of the phosphate in natural waters. Anal. Chim. Acta 27: 31–36. http://dx.doi.org/10.1016/S0003-2670(00)88444-5CrossrefGoogle Scholar

  • [36] Musarrat J., Bano N. & Rao R.A.K. 2000. Isolation and characterization of 2,4-dichlorophenoxyacetic acid-catabolizing bacteria and their biodegradation efficiency in soil. World J. Microbiol. Biotechnol. 16: 495–497. http://dx.doi.org/10.1023/A:1008945720327CrossrefGoogle Scholar

  • [37] Nakeeran S., Fernando W.G.D. & Siddiqui Z.A. 2005. Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases, pp. 257–296. In: Siddiqui Z.A. (ed.), PGPR Biocontrol and Biofertilization, Springer. Google Scholar

  • [38] Oehl F., Oberson A., Probst M., Fliessbach A., Roth H.R. & Frossard E. 2001. Kinetics of microbial phosphorus uptake in cultivated soils. Biol. Fertil. Soil 34: 31–41. http://dx.doi.org/10.1007/s003740100362CrossrefGoogle Scholar

  • [39] Olsen S.R. & Sommers L.E. 1982. Phosphorus, pp. 403–430. In: Page A.L., Miller A.L. & Keeney R.H. (eds), Methods of Soil Analysis, part 2, Chemical and Microbiological Properties. American Society of Agronomy, Madison, Wisconsin, USA. Google Scholar

  • [40] Pal S.S. 1998. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198: 169–177. http://dx.doi.org/10.1023/A:1004318814385CrossrefGoogle Scholar

  • [41] Pandey A. & Palni L.M.S. 1998. Isolation of Pseudomonas corrugata from Sikkim Himalayas. World J. Microbiol. Biotechnol. 14: 411–413. http://dx.doi.org/10.1023/A:1008825514148CrossrefGoogle Scholar

  • [42] Pandey A., Trivedi P., Kumar B. & Palni L.M.S. 2006. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr. Microbiol. 53: 102–107. http://dx.doi.org/10.1007/s00284-006-4590-5Google Scholar

  • [43] Peix A., Rivas R., Mateos P.F., Martinez-Molina E., Rodrigue Barrueco C. & Velazquez E. 2003. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int. J. Syst. Evol. Microbiol. 53: 2067–2072. http://dx.doi.org/10.1099/ijs.0.02703-0CrossrefGoogle Scholar

  • [44] Peix A., Rivas R., Santa-Regina I., Mateos P.F., Martinez-Molina E., Rodrigue Barrueco C. & Velazquez E. 2004. Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int. J. Syst. Evol. Microbiol. 54: 847–850. http://dx.doi.org/10.1099/ijs.0.02966-0CrossrefGoogle Scholar

  • [45] Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Google Scholar

  • [46] Sarniguet A., Lucas P., Lucas M. & Samson R. 1992. Soil conduciveness to take all of wheat: influence of the nitrogen fertilizers on the structure of populations of fluorescent pseudomonads. Plant Soil 145: 29–36. http://dx.doi.org/10.1007/BF00009538CrossrefGoogle Scholar

  • [47] Selvakumar G., Kundu S., Joshi P., Nazim S., Gupta A.D., Mishra P.K. & Gupta H.S. 2008. Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol. 24: 955–960. http://dx.doi.org/10.1007/s11274-007-9558-5Google Scholar

  • [48] Selvakumar G., Mohan M., Kundu S., Gupta A.D., Joshi P., Nazim S. & Gupta H.S. 2007. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett. Appl. Microbiol. 46: 171–175. http://dx.doi.org/10.1111/j.1472-765X.2007.02282.xCrossrefGoogle Scholar

  • [49] Shivaji S., Chaturvedi P., Reddy G.S.N. & Suresh K. 2005. Pedobacter himalayensis sp. nov., from Hamta glacier located in the Himalayan mountain range in India. Int. J. Syst. Evol. Microbiol. 55: 1083–1088. http://dx.doi.org/10.1099/ijs.0.63532-0CrossrefGoogle Scholar

  • [50] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876–4882. http://dx.doi.org/10.1093/nar/25.24.4876CrossrefGoogle Scholar

  • [51] Trivedi P. & Sa T. 2008. Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at low temperatures. Curr. Microbiol. 56: 140–144. http://dx.doi.org/10.1007/s00284-007-9058-8CrossrefGoogle Scholar

  • [52] Vazquez P., Holguin G., Puente M.E., Lopez-Cortez A. & Bashan Y. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid costal lagoon. Biol. Fertil. Soil 30: 460–468. http://dx.doi.org/10.1007/s003740050024CrossrefGoogle Scholar

  • [53] Vega N.W.O. 2007. A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Revista Facultad Nacional de Agronomia, Medellin 60: 3621–3643. Google Scholar

  • [54] Vessey J.K. 2004. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571–586. http://dx.doi.org/10.1023/A:1026037216893CrossrefGoogle Scholar

  • [55] Weller D.M. 2002. Microbial population responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40: 309–348. http://dx.doi.org/10.1146/annurev.phyto.40.030402.110010CrossrefGoogle Scholar

About the article

Published Online: 2009-02-20

Published in Print: 2009-04-01

Citation Information: Biologia, Volume 64, Issue 2, Pages 239–245, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0041-7.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Anita Pandey and Luis Andrés Yarzábal
Applied Microbiology and Biotechnology, 2018
Farley Alexandre da Fonseca Breda, Thamires Ferreira Rodrigues da Silva, Silvana Gomes dos Santos, Gabriela Cavalcanti Alves, and Veronica Massena Reis
Archives of Microbiology, 2018
Ji-Yeon Yoo, Eun-Jin Jang, Soo-Yeun Park, and Hong-Joo Son
Journal of Environmental Science International, 2018, Volume 27, Number 9, Page 771
Luis Andrés Yarzábal, Lorena Monserrate, Lenys Buela, and Eduardo Chica
Polar Biology, 2018
Sana Kamran, Izzah Shahid, Deeba N. Baig, Muhammad Rizwan, Kauser A. Malik, and Samina Mehnaz
Frontiers in Microbiology, 2017, Volume 8
L. Paikhomba Singha, Rhitu Kotoky, and Piyush Pandey
Genome Announcements, 2017, Volume 5, Number 49, Page e01347-17
Wenbo Chen, Honghai Hu, Chunjiang Zhang, Feng Huang, Dequan Zhang, and Hong Zhang
BMC Microbiology, 2017, Volume 17, Number 1
Waseem Hayat, Hina Aman, Usman Irshad, Muhammad Azeem, Akhtar Iqbal, and Rashid Nazir
Applied Soil Ecology, 2017, Volume 112, Page 51
Dharmender Yadav, Vikas Pruthi, and Pramod Kumar
Journal of Water Process Engineering, 2016, Volume 13, Page 61
Almas Zaidi, Md. Saghir Khan, Ees Ahmad, Saima Saif, Asfa Rizvi, and Mohammad Shahid
Acta Physiologiae Plantarum, 2016, Volume 38, Number 5
Samira Tabatabaei, Parviz Ehsanzadeh, Hassan Etesami, Hossein A. Alikhani, and Bernard R. Glick
Spanish Journal of Agricultural Research, 2016, Volume 14, Number 1, Page e0802
Rashid Nazir, Waseem Hayat, Palwasha Rehman, Akhtar Iqbal, and Usman Irshad
Geomicrobiology Journal, 2017, Volume 34, Number 2, Page 119
Martha Helena Ramírez Bahena, Sergio Salazar, Encarna Velázquez, Gisèle Laguerre, and Alvaro Peix
Symbiosis, 2015, Volume 67, Number 1-3, Page 33
Sonia Ciccazzo, Alfonso Esposito, Luigimaria Borruso, and Lorenzo Brusetti
Annals of Microbiology, 2016, Volume 66, Number 1, Page 43
Priyanka Sati, Kusum Dhakar, and Anita Pandey
ISRN Biodiversity, 2013, Volume 2013, Page 1
Sabine Ragot, Josef Zeyer, Lydia Zehnder, Eric Reusser, Helmut Brandl, and Anna Lazzaro
Geoderma, 2013, Volume 202-203, Page 30
Govindan Selvakumar, Piyush Joshi, Preeti Suyal, Pankaj Kumar Mishra, Gopal Krishna Joshi, Rangarajan Venugopalan, Jaideep Kumar Bisht, Jagdish Chandra Bhatt, and Hari Shankar Gupta
Annals of Microbiology, 2013, Volume 63, Number 4, Page 1353
Graciela Berríos, Gustavo Cabrera, Manuel Gidekel, and Ana Gutiérrez-Moraga
Polar Biology, 2013, Volume 36, Number 3, Page 349
Pankaj K. Mishra, Shekhar C. Bisht, Pooja Ruwari, Gopal K. Joshi, G. Singh, Jaideep K. Bisht, and J.C. Bhatt
European Journal of Soil Biology, 2011, Volume 47, Number 1, Page 35
Syed G. Dastager, C.K. Deepa, and Ashok Pandey
Applied Soil Ecology, 2011, Volume 49, Page 250
Emilce Viruel, María E. Lucca, and Faustino Siñeriz
Archives of Microbiology, 2011, Volume 193, Number 7, Page 489
C. K. Deepa, Syed G. Dastager, and Ashok Pandey
World Journal of Microbiology and Biotechnology, 2010, Volume 26, Number 12, Page 2277
Govindan Selvakumar, Piyush Joshi, Preeti Suyal, Pankaj K. Mishra, Gopal K. Joshi, Jaideep K. Bisht, Jagdish C. Bhatt, and Hari S. Gupta
World Journal of Microbiology and Biotechnology, 2011, Volume 27, Number 5, Page 1129
Govindan Selvakumar, Piyush Joshi, Pankaj K. Mishra, Jaideep K. Bisht, and Hari S. Gupta
Current Microbiology, 2009, Volume 59, Number 4, Page 432

Comments (0)

Please log in or register to comment.
Log in