Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 64, Issue 3 (Jun 2009)

Issues

The impact of biofilm-forming potential and tafi production on transport of environmental Salmonella through unsaturated porous media

Anthony Salvucci / Wei Zhang / Veronica Morales / M. Cakmak / Anthony Hay / Tammo Steenhuis
Published Online: 2009-05-09 | DOI: https://doi.org/10.2478/s11756-009-0102-y

Abstract

Understanding the factors influencing the transport of microbial pathogens, such as Salmonella and Escherichia coli, through porous media is critical to protecting drinking water supplies. The production of biofilms, along with individual biofilm-associated components, such as tafi, is believed to hinder transport of microorganisms through soil. This study investigated the relationship between biofilm formation and tafi production and the transport of environmental Salmonella through porous media. Thirty-two Salmonella isolates were initially assayed for their ability to form biofilms, from which a subset of these was selected to represent a range of high and low biofilm-formation potential and tafi formation capabilities. These were subsequently examined in unsaturated sand columns for transport characteristics. No obvious correlation was observed between Salmonella phenotypes and column retention. The results indicated that while transport of well-characterized laboratory E. coli strains can often be hindered by the presence of tafi and the potential to form biofilms, the presence of tafi did not retard the transport of the Salmonella strains.

Keywords: E. coli; bacterial transport; curli; cellulose; fimbriae

  • [1] Abu-Lail N.I. & Camesano T.A. 2003. Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. Environ. Sci. Technol. 37: 2173–2183. http://dx.doi.org/10.1021/es026159oCrossrefGoogle Scholar

  • [2] Bjergbaek L.A. & Roslev P. 2005. Formation of nonculturable Escherichia coli in drinking water. J. Appl. Microbiol. 99: 1090–1098. http://dx.doi.org/10.1111/j.1365-2672.2005.02706.xCrossrefGoogle Scholar

  • [3] Brombacher E. et al. 2003. The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology 149: 2847–2857. http://dx.doi.org/10.1099/mic.0.26306-0CrossrefGoogle Scholar

  • [4] Da Re S. & Gingo J.-M. 2006. A CsgD-Independent Pathway for cellulose production and biofilm formation in Escherichia coli. J. Bacteriol. 188: 3073–3087. http://dx.doi.org/10.1128/JB.188.8.3073-3087.2006CrossrefGoogle Scholar

  • [5] Gebbink M.F.B.G. et al. 2005. Amyloids — a functional coat for microorganisms. Nat. Rev. Microbiol. 3: 333–341. http://dx.doi.org/10.1038/nrmicro1127CrossrefGoogle Scholar

  • [6] Ginn T.R. et al. 2002. Processes in microbial transport in the natural subsurface. Adv. Water Res. 25: 1017–1042. http://dx.doi.org/10.1016/S0309-1708(02)00046-5CrossrefGoogle Scholar

  • [7] Gualdi L. et al. Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154: 2017–2024. Google Scholar

  • [8] Hall-Stoodley L. at al. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95–108. http://dx.doi.org/10.1038/nrmicro821CrossrefGoogle Scholar

  • [9] Hammar M. et al. 1996. Nucleator-dependent intercellular assembly of adhesive tafi organelles in Escherichia coli. P. Natl. Acad. Sci. USA 93: 6562–6566. http://dx.doi.org/10.1073/pnas.93.13.6562CrossrefGoogle Scholar

  • [10] Heaton J.C. & Jones K. 2008. Microbial contamination of fruit and vegetables and the behavior of enteropathogens in the phyllosphere: a review. J. Appl. Microbiol. 104: 613–626. http://dx.doi.org/10.1111/j.1365-2672.2007.03587.xWeb of ScienceCrossrefGoogle Scholar

  • [11] Jonas K. et al. 2007. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol. 7: 70. http://dx.doi.org/10.1186/1471-2180-7-70Web of ScienceCrossrefGoogle Scholar

  • [12] Kaneene J.B. et al. 2008. Changes in tetracycline susceptibility of enteric bacteria following switching to nonmedicated milk replacer for dairy calves. J. Clin. Microbiol. 46: 1968–1967. http://dx.doi.org/10.1128/JCM.00169-08CrossrefWeb of ScienceGoogle Scholar

  • [13] Landini P. & Zehnder A.J. 2002. The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating the expression of lipopolysaccharide and flagellar genes. J. Bacteriol. 184: 1522–1529. http://dx.doi.org/10.1128/JB.184.6.1522-1529.2002CrossrefGoogle Scholar

  • [14] Macler B.A. & Merkle J.C. 2000. Current knowledge on groundwater microbial pathogens and their control. Hydrogeol. J. 8: 29–40. http://dx.doi.org/10.1007/PL00010972CrossrefGoogle Scholar

  • [15] Olsén A. et al. 1993. Environmental regulation of curli production in Escherichia coli. Infect. Agent. Dis. 2: 272–274. Google Scholar

  • [16] Prouty A.M. et al. 2002. Biofilm formation and interaction with the surfaces of gallstone by Salmonella spp. Infect. Immun. 70: 2640–2649. http://dx.doi.org/10.1128/IAI.70.5.2640-2649.2002CrossrefGoogle Scholar

  • [17] Reisner A. et al. 2006. In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J. Bacteriol. 188: 3572–3581. http://dx.doi.org/10.1128/JB.188.10.3572-3581.2006CrossrefGoogle Scholar

  • [18] Rijnaarts H.H.M. et al. 1995. Reversibility and mechanism of bacterial adhesion. Colloid Surface B. 4: 5–22. http://dx.doi.org/10.1016/0927-7765(94)01146-VCrossrefGoogle Scholar

  • [19] Römling U. et al. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180: 722–731. Google Scholar

  • [20] Sambrook J. et al. 1989. Molecular Cloning: A Laboratory Manual, Vol. 3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Google Scholar

  • [21] Stevik T.K. et al. 2004. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 38: 1355–1367. http://dx.doi.org/10.1016/j.watres.2003.12.024CrossrefGoogle Scholar

  • [22] Toba, F.A. 2008 Characterization of the physiological implications of Defective Lambdoid Phage DLP12 in Escherichia coli. PhD Dissertation, Cornell University Google Scholar

  • [23] Tufenkji N. 2007. Modeling microbial transport in porous media: Traditional approaches and recent developments. Adv. Water Resour. 30: 1455–1469. http://dx.doi.org/10.1016/j.advwatres.2006.05.014CrossrefWeb of ScienceGoogle Scholar

  • [24] Vidal O. et al. 1998. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases tafi expression. J. Bacteriol. 180: 2442–2491. Google Scholar

  • [25] Walker S.L. et al. 2005. Influence of growth phase on adhesion kinetics of Escherichia coli D21g. Appl. Environ. Microb. 71: 3093–3099. http://dx.doi.org/10.1128/AEM.71.6.3093-3099.2005CrossrefGoogle Scholar

  • [26] Winfield M.D. & Groisman E.A. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microb. 69: 3687–3694. http://dx.doi.org/10.1128/AEM.69.7.3687-3694.2003CrossrefGoogle Scholar

  • [27] Yang H.H. et al. 2004. High diversity among environmental Escherichia coli isolates from a bovine feedlot. Appl. Environ. Microb. 70: 1528–1536. http://dx.doi.org/10.1128/AEM.70.3.1528-1536.2004CrossrefGoogle Scholar

About the article

Published Online: 2009-05-09

Published in Print: 2009-06-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0102-y.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Allison M. Truhlar, Anthony E. Salvucci, M. Todd Walter, Lorin D. Warnick, Anthony G. Hay, and Tammo S. Steenhuis
Environmental Science & Technology, 2015, Volume 49, Number 4, Page 2099
[2]
Kelvin Wong, Dermont Bouchard, and Marirosa Molina
Colloids and Surfaces B: Biointerfaces, 2014, Volume 122, Page 778
[3]
Emma Engström, Roger Thunvik, Robinah Kulabako, and Berit Balfors
Critical Reviews in Environmental Science and Technology, 2015, Volume 45, Number 1, Page 1
[4]
Scott A. Bradford, Verónica L. Morales, Wei Zhang, Ronald W. Harvey, Aaron I. Packman, Arvind Mohanram, and Claire Welty
Critical Reviews in Environmental Science and Technology, 2013, Volume 43, Number 8, Page 775
[5]
Dermont Bouchard, Wei Zhang, and Xiaojun Chang
Water Research, 2013, Volume 47, Number 12, Page 4086
[6]
Carsten S. Jacobsen and Tina B. Bech
Food Research International, 2012, Volume 45, Number 2, Page 557

Comments (0)

Please log in or register to comment.
Log in