Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 64, Issue 4


UV-B radiation and selenium affected energy availability in green alga Zygnema

Mateja Germ / Ivan Kreft / Alenka Gaberščik
Published Online: 2009-07-17 | DOI: https://doi.org/10.2478/s11756-009-0062-2


Green alga Zygnema was exposed to three concentrations of selenium and two levels of UV-B radiation. The combined effects of both treatments on energy availability; photochemical quantum yield and respiratory potential were studied. Our findings show that traces of selenium enhance metabolic process connected with photochemical quantum yield and mitochondrial respiration. Surprisingly, selenium does not diminish the effects of UV-B radiation; on the contrary, the combined action of UV-B radiation and traces of selenium leads to pronounced negative effects on photochemical quantum yield and the respiratory potential. Selenium is involved in the activation of energy resources in green alga Zygnema. The importance of selenium for activity of the mitochondria is possibly an evolutionary recollection from an endosymbiotic bacterium.

Keywords: electron transport system; PSII; selenium; UV radiation; Zygnema

  • [1] Bischof K., D. Hanelt & Wiencke C. 1998. UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar. Biol. 131: 597–605. http://dx.doi.org/10.1007/s002270050351CrossrefGoogle Scholar

  • [2] Björkman O. & Demmig-Adams B. 1995. Regulation of photosynthesis light energy capture, conversion, and dissipation in leaves of higher plants, pp. 17–47. In: Schulze E.D. & Caldwell M.M. (eds), Ecophysiology of Photosynthesis, Ecological Studies, Springer Verlag, Berlin. Google Scholar

  • [3] Björn L.O. 1999. UV-B Effects: Receptors and Targets, pp. 821–832. In: Singhal G.S., Renger G., Sopory S.K., Irrgang K.D. & Govindjee (eds), Concepts in Photobiology: Photosynthesis and Photomorphogenesis, Narosa Publishing House, New Delhi, India. Google Scholar

  • [4] Caldwell M.M. 1968. Solar ultraviolet radiation as an ecological factor for Alpine plants. Ecol. Monogr. 38: 243–268. http://dx.doi.org/10.2307/1942430CrossrefGoogle Scholar

  • [5] Cullen J.J. & Neale P.J. 1994. Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth. Res. 39: 303–320. http://dx.doi.org/10.1007/BF00014589CrossrefGoogle Scholar

  • [6] Easwari K. & Lalitha K. 1995. Subcellular-distribution of selenium during uptake and its influence on mitochondrial oxidations in germinating Vigna radiata L. Biol. Trace Elem. Res. 48: 141–160. http://dx.doi.org/10.1007/BF02789188CrossrefGoogle Scholar

  • [7] Ekelund N.G.A. & Danilov R.A. 2001. The influence of selenium on photosynthesis and “light-enhanced dark respiration” (LEDR) in the flagellate Euglena gracilis after exposure to ultraviolet radiation. Aquat. Sci. 63: 457–465. http://dx.doi.org/10.1007/s00027-001-8044-7CrossrefGoogle Scholar

  • [8] Eker A.P.M., Kooiman P., Hessels J.K.C. & Yasui A. 1990. DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J. Biol. Chem. 265: 8009–8015. Google Scholar

  • [9] Fu L.H., Wang X.F., Eyal Y., She Y.M., Donald L.J. & Standing K.G. 2002. A seleno protein in the plant kingdom. J. Biol. Chem. 277: 25983–25991. http://dx.doi.org/10.1074/jbc.M202912200CrossrefGoogle Scholar

  • [10] Gaberščik A., Germ M., Škof A., Drmaž D. & Trošt T. 2002. UV-B radiation screen and respiratory potential in two aquatic primary producers: Scenedesmus quadricauda and Ceratophyllum demersum. Verh. Internat. Verein Limnol. 27: 422–425. Google Scholar

  • [11] Gehrke C., Johanson U., Gwinn-Jones D., Björn L.O., Callaghan T.V. & Lee J.A. 1996. Single and interactive effects of enhanced ultraviolet-B radiation and increased atmospheric CO2 on terrestrial and subarctic ecosystems. Ecol. Bull. 45: 192–203. Google Scholar

  • [12] Harrison P.J., Yu P.W., Thompson P.A., Price N.M. & Philips D.J. 1988. Survey of selenium requirements in marine phytoplankton. Mar. Ecol. Prog. 47: 89–96. http://dx.doi.org/10.3354/meps047089CrossrefGoogle Scholar

  • [13] Hazzard C., Lesser M.P. & Kinzie III. R.A. 1997. Effects of ultraviolet radiation on photosynthesis in the subtropical marine diatom Chaetoceros gracilis (Bacilariophyceae). J. Phycol. 33: 960–968. http://dx.doi.org/10.1111/j.0022-3646.1997.00960.xCrossrefGoogle Scholar

  • [14] Häder D.P., Lebert M. & Helbling E.W. 2001. Effects of solar radiation on the Patagonian macroalga Enteromorpha linza (L.) J. Agardh Chlorophyceae. J. Photochem. Photobiol. B: Biol. 62: 43–54. http://dx.doi.org/10.1016/S1011-1344(01)00162-2CrossrefGoogle Scholar

  • [15] Karsten U., Bischof K., Hanelt D., Tug H. & Wiencke C. 1999. The effect of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea (Rhodophyta). Physiol. Plant. 105: 58–66. http://dx.doi.org/10.1034/j.1399-3054.1999.105110.xCrossrefGoogle Scholar

  • [16] Kenner R.A. & Ahmed S.I. 1975. Measurements of electron transport activities in marine phytoplankton. Mar. Biol. 33: 119–127. http://dx.doi.org/10.1007/BF00390716CrossrefGoogle Scholar

  • [17] Kreft I., Stibilj V. & Trkov Z. 2002. Iodine and selenium content in pumpkin (Cucurbita pepo L.) oil and oil-cake. Eur. Food Res. Technol. 215: 279–281. http://dx.doi.org/10.1007/s00217-002-0563-5CrossrefGoogle Scholar

  • [18] Krizek D.T. & R. Mirecki M. 2004. Evidence for phytotoxic effects of cellulose acetate in UV exclusion studies. Environ. Exp. Bot. 51: 33–43. http://dx.doi.org/10.1016/S0098-8472(03)00058-3CrossrefGoogle Scholar

  • [19] Li Z.Y., Guo S.Y. & Lin L. 2003. Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresource Technol. 89: 171–176. http://dx.doi.org/10.1016/S0960-8524(03)00041-5CrossrefGoogle Scholar

  • [20] Mittler R. & Tel-Or E. 1991. Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC7942. Free Rad. Res. Comm. 12: 845–850. http://dx.doi.org/10.3109/10715769109145866CrossrefGoogle Scholar

  • [21] Packard T.T. 1971. The measurement of respiratory electron-transport activity in marine phytoplankton. J. Mar. Res. 29: 235–243. Google Scholar

  • [22] Rozema J., van de Staaij J. & Tosserams M. 1997. Effects of UV-B radiation on plants from agro- and natural ecosystems, pp. 213–232. In: Lumsden P.J. (ed), Plants and UV-B, responses to environmental change, Cambridge University Press, Cambridge, New York, Melbourne. Google Scholar

  • [23] Schreiber U. & Bilger W. 1992. Progress in chlorophyll fluorescence research: major developments during the last years in retrospect. Prog. Bot. 54: 151–173. Google Scholar

  • [24] Schreiber U., Bilger W. & Neubauer C. 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis, pp. 49–69. In: Schulze E.D. & Caldwell M.M. (eds), Ecophysiology of Photosynthesis, Ecological Studies, Springer-Verlag, Berlin. Google Scholar

  • [25] Schofield O., Kroon B.M.A. & Prézelin B.B. 1995. Impact of ultraviolet-B radiation on photosystem II activity and its relationship to the inhibition of carbon fixation rates for Antarctic ice algae communities. J. Phycol. 31: 703–715. http://dx.doi.org/10.1111/j.0022-3646.1995.00703.xCrossrefGoogle Scholar

  • [26] Seppänen M., Turakainen M. & Hartikainen H. 2003. Selenium effects on oxidative stress in potato. Plant Sci. 165: 311–319. http://dx.doi.org/10.1016/S0168-9452(03)00085-2CrossrefGoogle Scholar

  • [27] Töth G.L. 1993. Electron transport system (ETS) activity of the plankton, sediment and biofilm in Lake Balaton (Hungary). Verh. Internat. Verein Limnol. 25: 680–681. Google Scholar

  • [28] Ursini F., Heim S., Kiess M., Maiorino M., Roveri A., Wissing J. & L. Flohe 1999. Dual function of the selenoprotein PHGPx during sperm maturation. Science 285: 1393–1396. http://dx.doi.org/10.1126/science.285.5432.1393CrossrefGoogle Scholar

  • [29] Yao Y., Li Y., Yang Y. & C. Li 2005. Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. Environ. Exp. Bot. 54: 86–294. http://dx.doi.org/10.1016/j.envexpbot.2004.09.006CrossrefGoogle Scholar

About the article

Published Online: 2009-07-17

Published in Print: 2009-08-01

Citation Information: Biologia, Volume 64, Issue 4, Pages 676–679, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0062-2.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Marina Prieto-Amador
Czech Polar Reports, 2016, Volume 6, Number 1, Page 43
Eun-Jeong Park and Jong-il Choi
Biotechnology and Bioprocess Engineering, 2018, Volume 23, Number 6, Page 704
Andreas Holzinger, Andreas Albert, Siegfried Aigner, Jenny Uhl, Philippe Schmitt-Kopplin, Kateřina Trumhová, and Martina Pichrtová
Protoplasma, 2018
Andreas Holzinger and Martina Pichrtová
Frontiers in Plant Science, 2016, Volume 7
Jong-il Choi, Minchul Yoon, Sangyong Lim, Gwang Hoon Kim, and Hyun Park
Phycologia, 2015, Volume 54, Number 4, Page 333
T. Feng, S. S. Chen, D. Q. Gao, G. Q. Liu, H. X. Bai, A. Li, L. X. Peng, and Z. Y. Ren
Photosynthetica, 2015, Volume 53, Number 4, Page 609
Zhen Yang, Fanxiang Kong, Xiaoli Shi, Yang Yu, and Min Zhang
Journal of Hazardous Materials, 2015, Volume 283, Page 447

Comments (0)

Please log in or register to comment.
Log in