Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 64, Issue 4


Pollination biology of Disanthus cercidifolius var. longipes, an endemic and endangered plant in China

Yi-An Xiao / Bijoy Neog / Yong-Hong Xiao / Xiao-Hong Li / Jin-Chun Liu / Ping He
Published Online: 2009-07-17 | DOI: https://doi.org/10.2478/s11756-009-0122-7


Disanthus cercidifolius Maxim. var. longipes H.T. Chang usually has two inflorescences growing in opposite directions in the axillae, but occasionally three inflorescences grow paratactically. The typical flowering process could be divided into 4 periods: “Pre-dehiscence”, “Initial dehiscence”, “Full dehiscence” and “Withering”. Both the natural population and the planted population had a flowering peak of 15–35 days after the first flower bloomed. There were significant differences between the time courses of flowering of the two populations. Out-crossing is the main breeding system in this species. And autogamy decreases the risk of reproductive failure of this species. The main insect pollinators of D. cercidifolius var. longipes are Episyrphus balteatus de Geer, Scaptodrosophila coracina Kikkawa and Peng, Polistes olivaceus de Geer, Apis cerana Fabricius, Nezara viridula L. and Coccinella septempunctata L., and so on. Among the insects, S. coracina and E. balteatus are the most important and efficient pollinators, but others are inefficient pollinators. Though wind pollination is not efficient, it guarantees reproduction when insect pollinators are not available. “Mass flowering” is an adaptive behavior and reproductive strategy of this species, and “few fruiting” could be caused by the lack of pollinators.

Keywords: Disanthus cercidifolius Maxim. var. longipes H.T.Chang; pollen limitation; pollination efficiency; reproductive assurance role; reproductive strategy

  • [1] Anderson G.J. & Hill J.D. 2002. Many to flower, few to fruit: the reproductive biology of Hamamels virginiana (Hamamelidaceae). Am. J. Bot. 89: 67–78. http://dx.doi.org/10.3732/ajb.89.1.67CrossrefGoogle Scholar

  • [2] Faegri K. & van der Pijl L. 1979. The Principles of Pollination Ecology (3rd ed.), Pergamon Press, Oxford. Google Scholar

  • [3] Fausto J.A.J., Eckhart V.M. & Geber M.A. 2001. Reproductive assurance and the evolutionary of self-pollination in Clarkia xantiana (Onagraceae). Am. J. Bot. 88: 1794–1800. http://dx.doi.org/10.2307/3558355CrossrefGoogle Scholar

  • [4] Fishbein M. & Venable D.L. 1996. Diversity and temporal change in the effective pollinators of Asclepias tuberose. Ecology 77: 1061–1073. http://dx.doi.org/10.2307/2265576CrossrefGoogle Scholar

  • [5] Fu L.G. 1989. The Rare and Endangered Plants in China. Shanghai Education Press, Shanghai, pp. 158–159. Google Scholar

  • [6] Fu L.G. 1992. China Plant Red Data Book — Rare and Endangered Plants. Science Press, Beijing, pp. 324–325. Google Scholar

  • [7] He Y.P. & Liu J.Q. 2003. A review on recent advances in the studies of plant breeding system. Acta Phytoecol. Sin. 27: 151–163. Google Scholar

  • [8] Howe H.F. & Westley L.C. 1997. Ecology of pollination and seed dispersal, pp. 262–283. In: Crawley M.L. (ed.), Plant Ecology (2nd ed.), Blackwell Science, Oxford. Google Scholar

  • [9] Huang S.Q. & Guo Y.H. 2000. Pollination environment and sex allocation in Liriodendron chinense. Acta Ecol. Sin. 20: 49–52. Google Scholar

  • [10] Huang S.Q., Guo Y.H., Pan M.Q. & Chen J.K. 1999. Floral syndrome and insect pollination of Liriodendron chinense. Acta Bot. Sin. 41: 241–248. Google Scholar

  • [11] Li Y.G., Chen Z.H., Yue Y.Q., Hong J.L., Zhu G.G., Fang T. & Chen G.W. 2002. Quantitative distribution and forestry features of Disantus cercidifolius in Zhejiang. J. Zhejiang For. Coll., 19: 20–23. Google Scholar

  • [12] McIntosh M.E. 2002. Flowering phenology and reproductive output in two sister species of Ferocactus (Cactaceae). Plant Ecol. 159: 1–13. http://dx.doi.org/10.1023/A:1015589002987CrossrefGoogle Scholar

  • [13] Newstrom L.E., Frankie G.W. & Baker H.G. 1994. A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica 26: 141–159. http://dx.doi.org/10.2307/2388804CrossrefGoogle Scholar

  • [14] Rathcke B. & Lacey E.P. 1985. Phenological patterns of terrestrial plants. Annu. Rev. Ecol. Syst. 16: 179–214. http://dx.doi.org/10.1146/annurev.es.16.110185.001143CrossrefGoogle Scholar

  • [15] Stanton M.L, Snow A.A. & Handel S.N. 1986. Floral evolution: attractiveness to pollinators increases male fitness. Science 232: 1625–1627. http://dx.doi.org/10.1126/science.232.4758.1625CrossrefGoogle Scholar

  • [16] Takebayashi N. & Morrell P.L. 2001. Is self-fertilization an evolutionary dead end revisiting an old hypothesis with genetic theories and a macro-evolutionary approach? Am. J. Bot. 88: 1143–1150. http://dx.doi.org/10.2307/3558325CrossrefGoogle Scholar

  • [17] Tamura S. & Kudo G. 2000. Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis. Plant Ecol. 147: 185–192. http://dx.doi.org/10.1023/A:1009870521175CrossrefGoogle Scholar

  • [18] Wang X.F. 2001. The floral syndromes adapted to pollination patterns of four genera in Alismataceae from China. J.Wuhan Univ. (Nat. Sci. Ed.) 47: 485–492. Google Scholar

  • [19] Wyatt R. 1983. Pollinator plant interactions and the evolution of breeding systems. pp. 51–95. In: Real L. (ed.), Pollination Biology. Academic Press, Orlando. Google Scholar

  • [20] Xiao Y.A., He P., Deng H.P. & Li X.H. 2002. Numerical analysis of population morphological differentiation of Disanthus cercidiifolius Maxim. var. longipes in Jinggangshan. J. Wuhan Bot. Res. 20: 365–370. Google Scholar

  • [21] Xiao Y.A., He P., Deng H.P. & Shi M.Z. 2003. Study on population genetic diversity and genetic differentiation of Disanthus cercidifolius Maxim. var. longipes H.T.Chang in Jinggangshan. J. Southwest Univ. (Nat. Sci. Ed.) 28: 444–449. Google Scholar

  • [22] Xiao Y.A., He P. & Li X.H. 2004a. The flowering phenology and reproductive features of the endangered plant Disanthus cercidifolius Maxim. var. longipes H. T. Chang (Hamamelidaceae). Acta Ecol. Sin. 24: 9–14. Google Scholar

  • [23] Xiao Y.A., He P., Li X.H. & Deng H.P. 2004b. Study on numeric dynamics of natural populations of the endangered plant Disanthus cercidifolius Maxim. var. longipes H.T.Chang. Acta Phytoecol. Sin. 28: 252–257. Google Scholar

About the article

Published Online: 2009-07-17

Published in Print: 2009-08-01

Citation Information: Biologia, Volume 64, Issue 4, Pages 731–736, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0122-7.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ko Mochizuki and Atsushi Kawakita
Annals of Botany, 2018, Volume 121, Number 4, Page 651
Yi-An Xiao, Ming Dong, Ning Wang, and Li-Li Lan
Plant Species Biology, 2016, Volume 31, Number 1, Page 50

Comments (0)

Please log in or register to comment.
Log in