Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 64, Issue 4

Issues

Cloning and characterization of NM23-Bbt2 gene from amphioxus Branchiostoma belcheri tsingtauense

Fuguo Xing
  • Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuanxi Road, Beijing, 100193, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xungang Tan
  • Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pei-Jun Zhang
  • Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yang Liu
  • Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuanxi Road, Beijing, 100193, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Junkai Ma
  • Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-07-17 | DOI: https://doi.org/10.2478/s11756-009-0124-5

Abstract

A full-length amphioxus (Branchiostoma belcheri tsingtauense) NM23-Bbt2, NM23-H2 homologue, cDNA was isolated from the cDNA library and sequenced. The obtained amphioxus NM23-Bbt2 cDNA contains an open reading frame coding for 171 amino acids. Sequence analysis showed that the amphioxus NM23-Bbt2 was highly conserved with that of other species, and all of them contained highly conserved motifs that play important roles in the function of NM23. RT-PCR revealed that NM23-Bbt2 is expressed in the neuronal tissues and is expressed in all stages during the embryogenesis. Nucleoside kinases are thought to have a critical role in regulatory processes such as signal transduction, proliferation, and differentiation. Taken together, these results suggest that nucleoside diphosphate kinases have an important role to play in embryogenic development in amphioxus. Phylogenetic analysis showed that the amphioxus group 1 NDPKs (Bf1-4) may be precursors of the human group 1 NDPKs, NM23-Bf5, NM23-Bf6, NM23-Bf7 and NM23-Bf8 may be precursors of NM23-H5, NM23-H6, NM23-H7 and M23-H8, respectively. Our finding of nine NM23 genes in Branchiostoma floride, the precursor of vertebrates, strongly suggests that the ancestral gene corresponding to each of vertebrates NM23 genes generated before the appearance of vertebrates. Comparison of the gene structures of NM23-H2 homologue from invertebrates to vertebrates suggests that the locations of three of the four introns are conserved in amphioxus and vertebrates.

Keywords: Amphioxus; cephalochordate; evolution; expression; NDPK; NM23-Bbt2

  • [1] Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., … & Venter J.C. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185–2195. http://dx.doi.org/10.1126/science.287.5461.2185CrossrefGoogle Scholar

  • [2] Amrein L., Barraud P., Daniel J.Y., Perel Y. & Landry M. 2005. Expression patterns of nm23 genes during mouse organogenesis. Cell Tissue Res. 322: 365–378. http://dx.doi.org/10.1007/s00441-005-0036-9CrossrefGoogle Scholar

  • [3] Arnaud-Dabernat S., Masse K., Smani M., Peuchant E., Landry M., Bourbon P., Floch R.L., Daniel J. & Larou M. 2004. Nm23-M2/NDP kinase B induces endogenous c-myc and nm23-M1/NDP kinase A overexpression in BAF3 cells. Both NDP kinases protect the cells from oxidative stress-induced death. Exp. Cell Res. 301: 293–304. http://dx.doi.org/10.1016/j.yexcr.2004.07.026CrossrefGoogle Scholar

  • [4] Beyeler M. & Trueb B. 2006. Fgfrl1, a fibroblast growth factor receptor-like gene, is found in the cephalochordate Branchiostoma floridae but not in the urochordate Ciona intestinalis. Comp. Biochem. Physiol. B 145: 43–49. http://dx.doi.org/10.1016/j.cbpb.2006.06.002CrossrefGoogle Scholar

  • [5] Biggs J., Tripoulas N., Hersperger E., Dearolf C. & Shearn A. 1988. Analysis of the lethal interaction between the prune and killer of prune mutations of Drosophila awd. Genes Dev. 2: 1333–1343. http://dx.doi.org/10.1101/gad.2.10.1333CrossrefGoogle Scholar

  • [6] Blanquet P.R. 2000. Casein kinase 2 as a potentially important enzyme in the nervous system. Progr. Neurobiol. 60: 211–246. http://dx.doi.org/10.1016/S0301-0082(99)00026-XCrossrefGoogle Scholar

  • [7] Boutin J.A. 1997. Myristoylation. Cell Signal 9: 15–35. http://dx.doi.org/10.1016/S0898-6568(96)00100-3CrossrefGoogle Scholar

  • [8] Cavalier-Smith T. 1985. Selfish DNA and the origin of introns. Nature 315: 283–284. http://dx.doi.org/10.1038/315283b0CrossrefGoogle Scholar

  • [9] Dearolf C.R., Hersperger E. & Shearn A. 1988a. Developmental consequences of of awdb3, a cell autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev. Biol. 129: 159–168. http://dx.doi.org/10.1016/0012-1606(88)90170-4CrossrefGoogle Scholar

  • [10] Dearolf C.R., Tripoulas N., Biggs J. & Shearn A. 1988b. Molecular consequences of awdb3, a cell-autonomous lethal interaction mutation of Drosophila induced by hybrid dysgenesis. Dev. Biol. 129: 169–178. http://dx.doi.org/10.1016/0012-1606(88)90171-6CrossrefGoogle Scholar

  • [11] Dehal P., Satou Y., Campbell R.K., Chapman J., Degnan B., De Tomaso A., Davidson B., … & Rokhsar D.S. 2002. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298: 2157–2167. http://dx.doi.org/10.1126/science.1080049CrossrefGoogle Scholar

  • [12] Doolittle R.F., Feng D.F., Tsang S., Cho G. & Little E. 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470–477. http://dx.doi.org/10.1126/science.271.5248.470CrossrefGoogle Scholar

  • [13] Dumas C., Lascu I., Morera S., Glaser P., Fourme R., Wallet V., Lacombe M.L., Veron M. & Janin J. 1992 X-ray structure of nucleoside diphosphate kinase. EMBO J. 11: 3203–3208. Google Scholar

  • [14] Florenes V.A., Aamdal S., Myklebost O., Maelandsmo G.M., Bruland O.S. & Fodstad O. 1992. Levels of nm23 messenger RNA in metastatic malignnant melanomas: inverse correlation to disease progression. Cancer Res. 52: 6088–6091. Google Scholar

  • [15] Fournier H.N., Dupe-Manet S., Bouvard D., Lacombe M.L., Marie C., Block M.R. & Albiges-Rizo C. 2002. Integrin cytoplasmic domain-associated protein 1α (ICAP-1α) interacts directly with the metastatic suppressor nm23-H2, and both protein are targeted to newly formed cell adhesion sites upon integrin engagement. J. Biol. Chem. 277: 20895–20902. http://dx.doi.org/10.1074/jbc.M200200200CrossrefGoogle Scholar

  • [16] Fukuchi T., Nikawa J., Kimura N. & Watanabe K. 1993. Isolation, overexpression and disruption of a Saccharomyces cerevisiae YNK gene encoding nucleoside diphosphate kinase. Gene 129: 141–146. http://dx.doi.org/10.1016/0378-1119(93)90710-KCrossrefGoogle Scholar

  • [17] Gervasi F., Agnano I., Vossio S., Zupi G., Sacchi A. & Lombardi D. 1996. nm23 influences proliferation and differentiation of PC12 cells in response to nerve growth factor. Cell Growth Differ. 7: 1689–1695. Google Scholar

  • [18] Gilbert W. 1987. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52: 901–905. CrossrefGoogle Scholar

  • [19] Glardon S., Holland L.Z., Gehring W.J. & Holland N.D. 1998. Isolation and development expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development 125: 2701–2710. Google Scholar

  • [20] Hama H., Almaula N., Lerner C.G., Inouye S. & Inouye M. 1991. Nucleoside diphosphate kinase from Escherichia coli; its overproduction and sequence comparison with eukaryotic enzymes. Gene 105: 31–36. http://dx.doi.org/10.1016/0378-1119(91)90510-ICrossrefGoogle Scholar

  • [21] Hennessy C., Henry J.A., May F.E., Westley B.R., Angus B. & Lennard T.W. 1991. Expression of the antimetastatic gene nm23 in human breast cancer: an association with good prognosis. J. Natl. Cancer Inst. 83: 281–285. http://dx.doi.org/10.1093/jnci/83.4.281CrossrefGoogle Scholar

  • [22] Ishijima Y., Shimada N., Fukuda M., Miyazaki H., Orlov N.Y., Orlova T.G., Ymada T. & Kimura N. 1999. Overexpression of nucleoside diphosphate kinases induces neurite outgrowth and their substitution to inactive forms leads to suppression of nerve growth factor- and dibutyryl cyclic AMP-induced effects in PC12D cells. FEBS Lett. 445: 155–159. http://dx.doi.org/10.1016/S0014-5793(99)00116-7CrossrefGoogle Scholar

  • [23] Ishikawa N., Shimada N., Takagi Y., Ishijima Y., Fukuda M. & Kimura N. 2003. Molecular evolution of nucleoside diphosphate kinase genes: conserved core structure and multiplelayered regulatory regions. J. Bioenerg. Biomembr. 35: 7–18. http://dx.doi.org/10.1023/A:1023433504713CrossrefGoogle Scholar

  • [24] Kantor J.D., McCormick B., Steeg P.S. & Zetter B.R. 1993. Inhibition of cell motility after nm23 transfection of human and murine tumor cells. Cancer Res. 53: 1971–1973. Google Scholar

  • [25] Kargul G.J., Nagaraja R., Shimada T., Grahovac M.J., Lim M.K., Nakashima H., Waeltz P., Ma P., Chen E., Schlessinger D. & Ko M.S. 2000. Eleven densely clustered genes, six of them novel, in 176 kb of mouse t-complex DNA. Genome Res. 10: 916–923. http://dx.doi.org/10.1101/gr.10.7.916CrossrefGoogle Scholar

  • [26] Kimura N., Shimada N., Nomura K. & Watanabe K. 1990. Isolation and characterization of a cDNA clone encoding rat nucleoside diphosphate kinase. J. Biol. Chem. 265: 15744–15749. Google Scholar

  • [27] Kumar S., Tamura K. & Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 5: 150–163. http://dx.doi.org/10.1093/bib/5.2.150CrossrefGoogle Scholar

  • [28] Lacombe M.L., Milon L., Munier A., Mehus J.G. & Lambeth D.O. 2000. The human nm23/nucleoside diphosphate kinase. J. Bioenerg. Biomembr. 32: 247–258. http://dx.doi.org/10.1023/A:1005584929050CrossrefGoogle Scholar

  • [29] Lacombe M.L., Wallet V., Troll H. & Veron M. 1990. Functional cloning of a nucleoside diphosphate kinase from Dictyostelium discoideum. J. Biol. Chem. 265: 10012–10018. Google Scholar

  • [30] Lakso M., Steeg P.S. & Westphal H. 1992. Embryonic expression of NM23 during mouse organogenesis. Cell Growth Differ. 3: 873–879. Google Scholar

  • [31] Leone A., Flatow U., Vanhoutte K. & Steeg P.S. 1993. Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity. Oncogene 8: 2325–2333. Google Scholar

  • [32] Li X., Zhang W., Chen D., Liu Y., Huang X., Shi D. & Zhang H. 2006. Expression of a novel somite-formation-related gene, AmphiSom, during amphioxus development. Dev. Genes Evol. 216: 52–55. http://dx.doi.org/10.1007/s00427-005-0027-6CrossrefGoogle Scholar

  • [33] MacDonald N.J., Freje J.M.P., Stracke M.L., Manrow R.E. & Steeg P.S. 1996. Site-directed mutagenesis of nm23-H1. Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transfection into human breast carcinoma cells. J. Biol. Chem. 271: 25107–25116. http://dx.doi.org/10.1074/jbc.271.41.25107Google Scholar

  • [34] Masse K., Dabernat S., Bourbon P.M., Larou M., Amrein L., Barraud P., Perel Y., Camara M., Landry M., Lacombe M.L. & Daniel J.Y. 2002. Characterization of nm23-M2, nm23-M3 and nm23-M4 mouse genes: comparison with their human orthologs. Gene 296: 87–97. http://dx.doi.org/10.1016/S0378-1119(02)00836-3CrossrefGoogle Scholar

  • [35] Mehus J.G., Deloukas P. & Lambeth D.O. 1999. NME6: a new member of the nm23/nucleoside diphosphate kinase gene family located on human chromosome 3p21.3. Hum. Genet. 104: 454–459. http://dx.doi.org/10.1007/s004390050987CrossrefGoogle Scholar

  • [36] Milon L., Merck M.F., Munier A., Erent M., Lascu I., Capeau J. & Lacombe ML. 1997. nm23-H4, a new member of the family of human nm23/nucleoside diphosphate kinase genes localized on chromosome 16p13. Hum. Genet. 99: 550–557. http://dx.doi.org/10.1007/s004390050405CrossrefGoogle Scholar

  • [37] Munier A., Feral C., Milon L., Pinon V.P., Gyapay G., Capeau J., Guellaen G. & Lacombe M.L. 1998. A new human nm23 homologue (nm23-H5) specifically expressed in testis germinal cells. FEBS Lett. 434: 289–294. http://dx.doi.org/10.1016/S0014-5793(98)00996-XCrossrefGoogle Scholar

  • [38] Murphy M., Harte T., McInerney J. & Smith T.J. 2000. Molecular cloning of an Atlantic salmon nucleoside diphosphate kinase cDNA and its pattern of expression during embryogenesis. Gene 257: 139–148. http://dx.doi.org/10.1016/S0378-1119(00)00374-7CrossrefGoogle Scholar

  • [39] Murphy M., McGinty A. & Godson G. 1998. Protein kinase C: potential targets for intervention in diabetic nephropathy. Curr. Opin. Nephrol. Hypertens. 7: 563–570. CrossrefGoogle Scholar

  • [40] Ouatas T., Selo M., Sadji Z., Hourdry J., Denis H. & Mazabraud A. 1998. Differential expression of nucleoside diphosphate kinases (NDPK/NM23) during Xenopus early development. Int. J. Dev. Biol. 42: 43–52. Google Scholar

  • [41] Postel E.H., Abramczyk B.M., Levit M.N. & Kyin S. 2000a. Catalysis of DNA cleavage and nucleoside triphosphate synthesis by NM23-H2/NDP kinase share an active site that implies a DNA repair function. Proc. Natl. Acad. Sci. USA 97: 14194–14199. http://dx.doi.org/10.1073/pnas.97.26.14194CrossrefGoogle Scholar

  • [42] Postel E.H., Berberich S.J., Rooney J.W. & Kaetzel D.K. 2000b. Human NM23/nucleoside diphosphate kinase regulates gene expression through DNA binding to nucleoside-hypersensitive transcriptional elements. J. Bioenerg. Biomembr. 32: 277–284. http://dx.doi.org/10.1023/A:1005541114029CrossrefGoogle Scholar

  • [43] Postel E.H., Weiss V.H., Beneken J. & Kirtane A. 1996. Mutational analysis of NM23-H2/NDP kinase identifies the structural domains critical to recognition of a c-myc regulatory element. Proc. Natl. Acad. Sci. USA 93: 6892–6897. http://dx.doi.org/10.1073/pnas.93.14.6892CrossrefGoogle Scholar

  • [44] Shimada N., Ishikawa N., Munakata Y., Toda T., Watanabe K. & Kimura N. 1993. A second form (β isoform) of nucleoside diphosphate kinase from rat. Isolation and characterization of complementary and genomic DNA and expression. J. Biol. Chem. 268: 2583–2589. Google Scholar

  • [45] Stahl J.A., Leone A., Rosengard A.M., Porter L., King C.R. & Steeg P.S. 1991. Identification of a second human nm23 gene, nm23-H2. Cancer Res. 51: 445–449. Google Scholar

  • [46] Steeg P.S., Bevilacqua G., Kopper L., Thorgeirsson U.P., Talmadge J.E., Liotta L.A. & Sobel M.E. 1988a. Evidence for a novel gene associated with low tumor metastatic potential. J. Natl. Cancer Inst. 80: 200–204. http://dx.doi.org/10.1093/jnci/80.3.200CrossrefGoogle Scholar

  • [47] Steeg P.S., Bevilacqua G., Pozzatti R., Liotta L.A. & Sobel M.E. 1988b. Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res. 48: 6550–6554. Google Scholar

  • [48] Terada R., Yasutake T., Nakamura S., Hisamatsu T., Sawai T., Yamaguchi H., Nakagoe T., Ayabe H. & Tagawa Y. 2002. Clinical significance of nm23 expression and chromosome 17 numerical aberrations in primary gastric cancer. Med. Oncol. 19: 239–248. http://dx.doi.org/10.1385/MO:19:4:239CrossrefGoogle Scholar

  • [49] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882. http://dx.doi.org/10.1093/nar/25.24.4876CrossrefGoogle Scholar

  • [50] Troll H., Winckler T., Lascu I., Muller N., Saurin W., Veron M. & Mutzel R. 1993. Separate nuclear genes encode cytosolic and mitochondrial nucleoside diphosphate kinase in Dictyostelium discoideum. J. Biol. Chem. 268: 25469–25475. Google Scholar

  • [51] Trotman C.N. 1998. Introns-early: slipping lately? Trends Genet. 14: 132–134. http://dx.doi.org/10.1016/S0168-9525(98)01400-0CrossrefGoogle Scholar

  • [52] Tsuiki H., Nitta M., Furuya A., Hanai N., Fujiwara T., Inagaki M., Kochi M., Ushio Y., Saya H. & Nakamura H. 1999. A novel human nucleoside diphosphate (NDP) kinase, Nm23-H6, localizes in mitochondria and affects cytokinesis. J. Cell Biochem. 76: 254–269. http://dx.doi.org/10.1002/(SICI)1097-4644(20000201)76:2<254::AID-JCB9>3.0.CO;2-GCrossrefGoogle Scholar

  • [53] Tung T.C., Wu S.C. & Tung Y.Y.F. 1958. The development of isolated blastomere of amphioxus. Scientia Sinica 7: 1280–1320. Google Scholar

  • [54] Uno T., Ueno M., Kikuchi M. & Aizono Y. 2002. Purification and characterization of nucleoside diphosphate kinase from the brain of Bombyx mori. Arch. Insect Biochem. Physiol. 50: 147–155. http://dx.doi.org/10.1002/arch.10037CrossrefGoogle Scholar

  • [55] Urano T., Takamiya K., Furukawa K. & Shiku H. 1992. Molecular cloning and functional expression of the second mouse nm23/NDP kinase gene, nm23-M2. FEBS Lett. 309: 358–362. http://dx.doi.org/10.1016/0014-5793(92)80807-SCrossrefGoogle Scholar

  • [56] Venturelli D., Martinez R., Melotti P., Casella I., Peschle C., Cucco C., Spampinato G., Darzynkiewicz Z. & Calabretta B. 1995. Overexpression of DR-nm23, a protein encoded by a member of the nm23 gene family, inhibits granulocyte differentiation and induces apoptosis in 32Dc13 myeloid cells. Proc. Natl. Acad. Sci. USA 92: 7435–7439. http://dx.doi.org/10.1073/pnas.92.16.7435CrossrefGoogle Scholar

  • [57] Xu J., Liu L.Z., Deng X.F., Timmons L., Hersperger E., Steeg P.S., Veron M. & Shearn A. 1996. The enzymatic activity of Drosophila AWD/NDP kinase is necessary but not sufficient for its biological function. Dev. Biol. 177: 544–557. http://dx.doi.org/10.1006/dbio.1996.0184CrossrefGoogle Scholar

  • [58] Zang X. & Maizels R.M. 2001. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends Biochem. Sci. 26: 191–197. http://dx.doi.org/10.1016/S0968-0004(00)01761-8CrossrefGoogle Scholar

About the article

Published Online: 2009-07-17

Published in Print: 2009-08-01


Citation Information: Biologia, Volume 64, Issue 4, Pages 803–810, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0124-5.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in