Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 64, Issue 4


Insoluble but enzymatically active α-amylase from Bacillus licheniformis

Naeem Rashid / Alia Farooq
  • School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
  • Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ikram-ul-Haq / Muhammad Akhtar
Published Online: 2009-07-17 | DOI: https://doi.org/10.2478/s11756-009-0132-5


The gene encoding thermostable α-amylase from Bacillus licheniformis consisting of 483 amino acid residues (mature protein) was cloned and expressed in Escherichia coli under the control of T7 promoter. The analysis of the soluble and insoluble fractions after lyzing the host cells revealed that recombinant α-amylase was produced in insoluble aggregates. Despite being produced in the insoluble aggregates the recombinant enzyme was highly active with a specific activity of 408 U/mg.

Keywords: Bacillus licheniformis; cloning; α-amylase; inclusion bodies

  • [1] Bertoldo C. & Antranikian G. 2002. Starch hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6: 151–160. http://dx.doi.org/10.1016/S1367-5931(02)00311-3CrossrefGoogle Scholar

  • [2] Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • [3] Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37 (Database issue): D233–D238. http://dx.doi.org/10.1093/nar/gkn663CrossrefGoogle Scholar

  • [4] Gangadharan D., Sivaramakrishnan S., Nampoothiri K.M. & Pandey A. 2006. Solid culturing of Bacillus amyloliquefaciens for α-amylase production. Food Technol. Biotechnol. 44: 269–274. Google Scholar

  • [5] Gangadharan D., Sivaramakrishnan S., Nampoothiri K.M., Sukumaran R.K. & Pandey A. 2008. Response surface methodology for the optimization of α-amylase production by Bacillus amyloliquefaciens. Biores. Technol. 99: 4597–4602. http://dx.doi.org/10.1016/j.biortech.2007.07.028CrossrefGoogle Scholar

  • [6] Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316. Google Scholar

  • [7] Hockney R.C. 1994. Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12: 456–463. http://dx.doi.org/10.1016/0167-7799(94)90021-3CrossrefGoogle Scholar

  • [8] Janecek S. 1997. α-Amylase family: molecular biology and evolution. Progr. Biophys. Mol. Bio. 67: 67–97. http://dx.doi.org/10.1016/S0079-6107(97)00015-1CrossrefGoogle Scholar

  • [9] Janecek S. & Sevcik J. 1999. The evolution of starch-binding domain. FEBS Lett. 456: 119–125. http://dx.doi.org/10.1016/S0014-5793(99)00919-9CrossrefGoogle Scholar

  • [10] Janecek S., Svensson B. & MacGregor E.A. 2003. Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. Eur. J. Biochem. 270: 635–645. http://dx.doi.org/10.1046/j.1432-1033.2003.03404.xCrossrefGoogle Scholar

  • [11] Jorgensen S., Vorgias C.E. & Antranikian G. 1997. Cloning, sequencing, characterization and expression of an extracellular α-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J. Biol. Chem. 272: 16335–16342. http://dx.doi.org/10.1074/jbc.272.26.16335CrossrefGoogle Scholar

  • [12] Kuriki T., Takata H., Yanase M., Ohdan K., Fujii K., Terada Y., Takaha T., Hondoh H., Matsuura Y. & Imanaka T. 2006. he concept of the α-amylase family: a rational tool for interconverting glucanohydrolases/glucanotransferases, and their specificities. J. Appl. Glycosci. 53: 155–161. Google Scholar

  • [13] Lin L.L. & Hsu W.H. 1997. Lactose-induced expression of Bacillus sp. TS-23 amylase gene in E. coli regulated by a T7 promoter. Lett. Appl. Microbiol. 24: 365–368. http://dx.doi.org/10.1046/j.1472-765X.1997.00146.xCrossrefGoogle Scholar

  • [14] Machovic M., Svensson B., MacGregor E.A. & Janecek S. 2005. A new clan of CBM families based on bioinformatics of starchbinding domains from families CBM20 and CBM21. FEBS J. 272: 497–513. http://dx.doi.org/10.1111/j.1742-4658.2005.04942.xCrossrefGoogle Scholar

  • [15] Machovic M. & Janecek S. 2006. The evolution of putative starchbinding domains. FEBS Lett. 580: 6349–6356. http://dx.doi.org/10.1016/j.febslet.2006.10.041CrossrefGoogle Scholar

  • [16] Marco J.L., Bataus L.A. & Valencina F.F. 1996. Purification and characterization of a truncated B. subtilis α-amylase produced by E. coli. Appl. Microbiol. Biotechnol. 44: 746–752. Google Scholar

  • [17] Marston F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240: 1–12. Google Scholar

  • [18] Oslancova A. & Janecek S. 2002. Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family de-fined by the fifth conserved sequence region. Cell. Mol. Life Sci. 59: 1945–1959. http://dx.doi.org/10.1007/PL00012517CrossrefGoogle Scholar

  • [19] Park C.S., Chang C.C. & Kim J.Y. 1997. Expression, secretion, and processing of rice α-amylase in the Yarrowia lipolytica. J. Biol. Chem. 272: 6876–6881. http://dx.doi.org/10.1074/jbc.272.11.6876CrossrefGoogle Scholar

  • [20] Rashid N., Cornista J., Ezaki S., Fukui T., Atomi H. & Imanaka T. 2002. Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain. J. Bacteriol. 184: 777–784. http://dx.doi.org/10.1128/JB.184.3.777-784.2002CrossrefGoogle Scholar

  • [21] Rashid N., Shimada Y., Ezaki S., Atomi H. & Imanaka T. 2001. Low-temperature lipase from a psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064–4069. http://dx.doi.org/10.1128/AEM.67.9.4064-4069.2001Google Scholar

  • [22] Rivera M.H., Lopez-Munguia A., Soberon X. & Saab-Rincon G. 2003. α-Aamylase from Bacillus licheniformis mutants near to the catalytic site: effects on hydrolytic and transglycosylation activity. Protein Eng. 16: 505–514. http://dx.doi.org/10.1093/protein/gzg060CrossrefGoogle Scholar

  • [23] Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York, ISBN 0-87969-309-6. Google Scholar

  • [24] Shahhoseini M., Ziaee A.A. & Ghaemi N. 2003. Expression and secretion of an α-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. J. Appl. Microbiol. 95: 1250–1254. http://dx.doi.org/10.1046/j.1365-2672.2003.02082.xCrossrefGoogle Scholar

  • [25] Sibakov M. 1986. High expression of Bacillus licheniformis α-amylase with Bacillus secretion vector. Eur. J. Biochem. 155:577–581. http://dx.doi.org/10.1111/j.1432-1033.1986.tb09527.xCrossrefGoogle Scholar

  • [26] Sivaramakrishnan S., Gangadharan D., Nampoothiri K.M. & Pandey A. 2006. gα-Amylases from microbial sources — an overview on recent developments. Food Technol. Biotechnol. 44: 173–184. Google Scholar

  • [27] Speed M.A., Wang D.I.C. & King J. 1996. Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat. Biotechnol. 14: 1283–1287. http://dx.doi.org/10.1038/nbt1096-1283CrossrefGoogle Scholar

  • [28] Suominen I., Meyer P. & Tilgmann C. 1995. Effects of signal peptide mutations on processing of Bacillus stearothermophilus α-amylase in Escherichia coli. Microbiology 141: 649–654. http://dx.doi.org/10.1099/13500872-141-3-649CrossrefGoogle Scholar

  • [29] Tabor S. & Richardson C.C. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074–1078. http://dx.doi.org/10.1073/pnas.82.4.1074CrossrefGoogle Scholar

  • [30] Thomas J.G. & Baneyx F. 1997. Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Protein Express. Purif. 11: 289–296. http://dx.doi.org/10.1006/prep.1997.0796CrossrefGoogle Scholar

About the article

Published Online: 2009-07-17

Published in Print: 2009-08-01

Citation Information: Biologia, Volume 64, Issue 4, Pages 660–663, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0132-5.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shahid Mahmood Chohan, Naeem Rashid, Muhammad Sajed, and Tadayuki Imanaka
Folia Microbiologica, 2018
Raza Ashraf, Majida Atta Muhammad, Naeem Rashid, and Muhammad Akhtar
Journal of Biotechnology, 2017, Volume 254, Page 9
B. Malik, N. Rashid, N. Ahmad, and M. Akhtar
Biochemistry (Moscow), 2013, Volume 78, Number 8, Page 958
N. Rashid, N. Ahmed, M. Saleem Haider, and I. Haque
Folia Microbiologica, 2010, Volume 55, Number 2, Page 133

Comments (0)

Please log in or register to comment.
Log in