Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 64, Issue 4

Issues

GFAP-positive astrocytes are rare or absent in primary adult human brain tissue cultures

Ivana Macikova / Anna Perzelova / Peter Mraz / Ivan Bizik / Juraj Steno
Published Online: 2009-07-17 | DOI: https://doi.org/10.2478/s11756-009-0136-1

Abstract

Traditionally, astrocytes are divided into fibrous and protoplasmic types based on their morphologic appearance. Here the cultures were prepared separately from the adult human cortical gray and white matter of brain biopsies. Both cultures differed only in the number of glial fibrillary acidic protein (GFAP)-positive cells. In the gray matter these were absent or rare, whereas in confluent cultures from the white matter they reached 0.1% of all cells. Three main morphologic types of GFAP-positive cells were found in this study: stellate, bipolar and large flat cells. GFAP-positive cells with two or three long processes mimic a neuron-like morphology. We did not find process-bearing cells expressing neuronal markers (MAP-2, NF, and N-CAM). The conflicting reports concerning GFAP immunostaining and the study dealing with the presence of putative neurons in adult human brain cultures are discussed with respect to these findings. The latter classification of astrocytes into type 1 and type 2 is based on immunostaining to A2B5 antigen: type 1 (GFAP+/A2B5−) and type 2 (GFAP+/A2B5+) astrocytes are proposed to be analogous to protoplasmic and fibrous astrocytes, respectively. In adult human brain cultures we found only small amount of A2B5-positive cells. Double immunofluorescence revealed that astroglial cells of similar fibrous or bipolar shape grown on one coverslip were either GFAP+/A2B5+ or GFAP+/A2B5−. On the other hand, the A2B5+/GFAP− immunophenotype was not observed. These results indicate that in general the cell phenotype from adult human brain tissue is not well established when they are in culture.

Keywords: adult human astrocytes; neuronal markers; GFAP; A2B5 antigen; O4 antigen; GalC antigen

  • [1] Antanitus D.S., Choi B.H. & Lapham L.W. 1975. Immunofluorescence staining of astrocytes in vitro using antiserum to glial fibrillary acidic protein. Brain Res. 89: 363–367. http://dx.doi.org/10.1016/0006-8993(75)90729-5CrossrefGoogle Scholar

  • [2] Barres B.A. 2008. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60: 430–440. http://dx.doi.org/10.1016/j.neuron.2008.10.013Web of ScienceCrossrefGoogle Scholar

  • [3] Bignami A., Eng L.F., Dahl D. & Uyeda C.T. 1972. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43: 429–435. http://dx.doi.org/10.1016/0006-8993(72)90398-8CrossrefGoogle Scholar

  • [4] Brunet J.F., Pellerin L., Arsenijevic Y., Magistretti P. & Villemure J.G. 2002. A novel method for in vitro production of human glial-like cells from neurosurgical resection tissue. Lab. Invest. 82: 809–812. CrossrefGoogle Scholar

  • [5] Davies D.L., Niesman I.R., Boop F.A. & Phelan K.D. 2000. Heterogeneity of astroglia cultured from adult human temporal lobe. Int. J. Dev. Neurosci. 18: 151–160. http://dx.doi.org/10.1016/S0736-5748(99)00083-0CrossrefGoogle Scholar

  • [6] Eisenbarth G.S., Walsh F.S. & Nirenberg M. 1979. Monoclonal antibodies to a plasma membrane antigen of neurons. Proc. Natl. Acad. Sci. USA 76: 4913–4917. http://dx.doi.org/10.1073/pnas.76.10.4913CrossrefGoogle Scholar

  • [7] Eng L.F. & Lee Y.L. 1995. Intermediate filaments in astrocytes, pp. 650–667. In: Kettenman H. & Ransom B.R. (eds), Neuroglia, New York, Oxford University Press. Google Scholar

  • [8] Estes M.L., Ransohoff R.M., McMahon J.T., Jacobs B.S. & Barna B.P. 1990. Characterization of adult human astrocytes derived from explant culture. J. Neurosci. Res. 27: 697–705. http://dx.doi.org/10.1002/jnr.490270430CrossrefGoogle Scholar

  • [9] Holley J.E., Gveric D., Whatmore J.L. & Gutowski N.J. 1995. Tenascin C induces a quiescent phenotype in cultured adult human astrocytes. Glia 52: 53–58. http://dx.doi.org/10.1002/glia.20231CrossrefGoogle Scholar

  • [10] Kimelberg H.K. 1995. Receptors on astrocytes — what possible functions. Neurochem. Int. 26: 27–40. http://dx.doi.org/10.1016/0197-0186(94)00118-ECrossrefGoogle Scholar

  • [11] Kirschenbaum B., Nedergaard M., Preuss A., Barami K., Fraser R.A.R. & Goldman S.A. 1994. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Cortex 6: 576–589. http://dx.doi.org/10.1093/cercor/4.6.576CrossrefGoogle Scholar

  • [12] Miller R.H. & Raff M.C. 1984. Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J. Neurosci. 4: 585–592. Google Scholar

  • [13] Montgomery D.L. 1994. Astrocytes: form, functions, and roles in disease. Rev. Vet. Pathol. 31: 145–167. http://dx.doi.org/10.1177/030098589403100201CrossrefGoogle Scholar

  • [14] Newcombe J., Meeson A. & Cuzner M.L. 1988. Immunocytochemical characterization of primary glial cell cultures from normal adult human brain. Neuropathol. Appl. Neurobiol. 14: 453–465. http://dx.doi.org/10.1111/j.1365-2990.1988.tb01337.xCrossrefGoogle Scholar

  • [15] Oberheim N.A., Wanng X.H., Goldman S. & Nedergaard M. 2006. Astrocytic complexity distinguishes the human brain. Trends Neurosci. 29: 547–553. http://dx.doi.org/10.1016/j.tins.2006.08.004CrossrefGoogle Scholar

  • [16] Osborn M., Ludwig-Festl M., Weber K., Bignami A., Dahl D. & Bayreuther K. 1981. Expression of glial and vimentin type intermediate filaments in cultures derived from human glial material. Differentiation 19: 161–167. http://dx.doi.org/10.1111/j.1432-0436.1981.tb01143.xCrossrefGoogle Scholar

  • [17] Perzelova A., Macikova I., Mraz P., Bizik I. & Steno J. 1997. What is the role of protoplasmic astrocytes in adult human brain cortex. Final Symposium of the DFG Study Group, Functions of glial cells, p. 120. Google Scholar

  • [18] Perzelova A., Macikova I., Tardy M., Mraz P., Bizik I. & Steno J. 2007. Subpopulation of nestin positive glial precursor cells occurs in primary adult human brain cultures. Biologia 62: 633–640. http://dx.doi.org/10.2478/s11756-007-0123-3CrossrefWeb of ScienceGoogle Scholar

  • [19] Perzelova A. & Mares V. 1993. Appearance of GFAP-positive cells in adult human brain cultures spontaneously decelerated in growth. Glia 7: 237–244. http://dx.doi.org/10.1002/glia.440070307CrossrefGoogle Scholar

  • [20] Ponten J. & Westermark B. 1978. Properties of human malignant glioma cells in vitro. Med. Biol. 56: 184–193. Google Scholar

  • [21] Privat A., Gimenez-Ribotta M. & Ridet J.C. 1995. Morphology of astrocytes, pp. 3–22. In: Kettenmann H, & Ransom B. R. (eds), Glia, Oxford University Press, New York. Google Scholar

  • [22] Raff M.C., Abney E.R., Cohen J., Lindsay R. & Noble M. 1983. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3: 1289–1300. Google Scholar

  • [23] Ridet J.L., Malhorta S.K., Privat A. & Gage F.H. 1997. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20: 570–577. http://dx.doi.org/10.1016/S0166-2236(97)01139-9CrossrefGoogle Scholar

  • [24] Rutka J.T., Kleppe-Hoifodt H., Emma D.A., Giblin J.R., Dougherty D.V., McCulloch J.R., DeArmond S.J. & Rosenblum M.L. 1986. Characterization of normal human brain cultures. Lab. Invest. 55: 71–85. Google Scholar

  • [25] Temburni M.K. & Jacob M.H. 2001. New functions for glia in the brain. Proc. Natl. Acad. Sci. USA 98: 3631–3632. http://dx.doi.org/10.1073/pnas.081073198CrossrefGoogle Scholar

  • [26] Van der Laan L.J.W., De Groot C.J.A., Elices M.J. & Dijkstra C.D. 1997. Extracellular matrix proteins expressed by human adult astrocytes in vitro and in vivo: an astrocyte surface protein containing the CS1 domain contributes to binding of lymphoblasts. J. Neurosci. Res. 50: 539–548. http://dx.doi.org/10.1002/(SICI)1097-4547(19971115)50:4<539::AID-JNR5>3.0.CO;2-FCrossrefGoogle Scholar

About the article

Published Online: 2009-07-17

Published in Print: 2009-08-01


Citation Information: Biologia, Volume 64, Issue 4, Pages 833–839, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0136-1.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Giovanni Tosi, Antonietta Vilella, Resham Chhabra, Michael J. Schmeisser, Tobias M. Boeckers, Barbara Ruozi, Maria Angela Vandelli, Flavio Forni, Michele Zoli, and Andreas M. Grabrucker
Journal of Controlled Release, 2014, Volume 177, Page 96

Comments (0)

Please log in or register to comment.
Log in