Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 64, Issue 4

Issues

Nocturnal urinary melatonin levels and urine biochemistry in microwave-irradiated rats

Ivancica Trosic / Ivana Busljeta / Ivan Pavicic / Sanja Milkovic-Kraus
Published Online: 2009-07-17 | DOI: https://doi.org/10.2478/s11756-009-0139-y

Abstract

The aim of this study was to explore whether, during the course of a 15 days-lasting experiment, a two hours per day and five days per week, 2.45 GHz microwave whole-body irradiation may substantially and therefore provably affect rats’ nocturnal urinary 6-hydroxy-melatonin sulphate (aMT6s) excretion and urinalysis parameters. The average whole-body specific absorption rate (SAR) equalled to 1.25 (± 0.36 SE) W/kg. To collect nocturnal urine samples, animals were held in individual metabolic cages every experimental night from 7:00 PM till 7:00 AM next day. The concentration of aMT6s in rat urine samples was determined by a direct radioimmunoassay. Bilirubin, ketones, and urine protein content have been determined via multiple-use reagent strips. In comparison to the sham-exposed group, no significant changes in body temperature and food or water intake were observed in the exposed group. A decline in aMT6s, determined in the exposed rats, was observed from day 8 to day 11 of the experiment (P < 0.05). The aMT6s level remained consistently low until the end of the experiment, but not significantly lower than the control values. The results of the urine samples biochemical workup failed to reveal any significant differences between the exposed and the control animal groups. The results of this study suggest that, under the above described experimental conditions, repeated 2.45 GHz irradiation could act as a stressor and therefore influence the melatonine balance in rat.

Keywords: nocturnal urinary 6-hydroxy-melatonin sulphate (aMT6s); urinary metabolites; 2.45 GHz microwave; whole-body irradiation; rat

  • [1] Bakos J., Kubinyi G., Sinay H. & Thuróczy G. 2003. GSM Modulated radiofrequency radiation does not affect 6-sulfatoxymelatonin excretion of rats. Bioelectromagnetics 24: 531–534. DOI 10.1002/bem.10172 http://dx.doi.org/10.1002/bem.10172CrossrefGoogle Scholar

  • [2] Brainard G.C., Kavet R. & Kheifets L.I. 1999. The relationship between electromagnetic field and light exposure to melatonin and breast cancer risk: A review of the relevant literature. J. Pineal Res. 26: 65–100. http://dx.doi.org/10.1111/j.1600-079X.1999.tb00568.xCrossrefGoogle Scholar

  • [3] Brendel H., Niehaus M. & Lerchl A. 2000. Direct suppressive effects of weak magnetic fields (50Hz and 162/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus). J. Pineal Res. 29: 228–233. http://dx.doi.org/10.1034/j.1600-0633.2002.290405.xGoogle Scholar

  • [4] Busljeta I., Trosic I. & Milkovic-Kraus S. 2004. Erythropoietic changes in rats after 2.45 GHz nonthermal irradiation. Int. J. Hyg. Environ. Health 207: 549–554. DOI 10.1078/1438-4639-00326 http://dx.doi.org/10.1078/1438-4639-00326CrossrefGoogle Scholar

  • [5] Cherry N. 2000. Probable Health Effects Associated with Base Station in Communities: The Need for Health Surveys, pp. 109–114. In: Proc. International Conference on Cell Tower Sitting. Salzburg, Austria. Google Scholar

  • [6] Cleary S.F. 1997. In vitro studies of the effects of nonthermal radiofrequency and microwave radiation, pp. 119–129. In: Bernhardt J.H., Matthes R. & Repacholi M.H. (eds), Non-Thermal Effects of RF Electromagnetic Fields, ICNRP 3/97, Märkl-Druck, München. Google Scholar

  • [7] deSeze R., Ayoub J., Peray P., Miro L. & Touitou Y. 1999. Evaluation in humans of the effects of radiocellular telephones on the circadian patterns of melatonin secretion, a chronobiological rhythm marker. J. Pineal Res. 27: 237–242. http://dx.doi.org/10.1111/j.1600-079X.1999.tb00621.xCrossrefGoogle Scholar

  • [8] Durney C.H., Iskander M.F. & Massoudy H. 1986. Radiofrequency Radiation Dosimetry Handbook (SAM-TR-80-32, 4th ed). http://niremf.ifac.cnr.it/docs/HANDBOOK/home.htm (accessed 01.09.2008). Google Scholar

  • [9] Fernie K.J., Bird D.J. & Petitclerc D. 1999. Effects of electromagnetic fields on photophasic circulating melatonin levels in American Kestrels. Environ. Health. Perspect. 107: 901–904. http://dx.doi.org/10.2307/3454478CrossrefGoogle Scholar

  • [10] Fritze K., Wiessner C., Kuster N., Sommer C., Gass P., Hermann D.M., Klessing M. & Hossmann K.A. 1997. Effect of global system of mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience 81: 627–639. DOI 10.1016/S0306-4522(97)00228-5 http://dx.doi.org/10.1016/S0306-4522(97)00228-5CrossrefGoogle Scholar

  • [11] Grota L.J., Reiter R.J., Keng P. & Michaelson S. 1994. Electric field exposure alters serum melatonin but not pineal melatonin synthesis in male rats. Bioelectromagnetics 15(5): 427–437. DOI 10.1002/bem.2250150506 http://dx.doi.org/10.1002/bem.2250150506CrossrefGoogle Scholar

  • [12] Hata K., Yamaguchi H., Tsurita G., Watanabe S., Wake K., Taki M., Ueno S. & Nagawa H. 2005. Short term exposure to 1439 MHz pulsed TDMA field does not alter melatonin synthesis in rats. Bioelectromagnetics 26: 49–53. DOI 10.1002/bem.20080 http://dx.doi.org/10.1002/bem.20080Google Scholar

  • [13] Hyland G.J. 2001. The Physiological and Environmental Effects of Non-ionising Electromagnetic Radiation. http://www.whale.to/b/hyland1.html (accessed 01.09.2008). Google Scholar

  • [14] IEGMP Independent Expert Group on Mobile Phones. 2001. Mobile Phones and Health. http://www.iegmp.org.uk/report/text.htm (accessed 01.09.2008). Google Scholar

  • [15] Imaida K., Hagiwara A., Yoshino H., Tamano S., Sano M., Futakuchi M., Ogawa K., Asamoto M. & Shirai T. 2000. Inhibitory effects of low doses of melatonin on induction of preneoplastic liver lesions in a medium-term liver bioassay in F344 rats: relation to the influence of electromagnetic near field exposure. Cancer Lett. 155: 105–114. http://dx.doi.org/10.1016/S0304-3835(00)00415-8CrossrefGoogle Scholar

  • [16] Jarupat S., Kawabata A., Tokura H. & Borkiewicz A. 2003. Effect of the 1900 MHz electromagnetic field emitted from cellular phone on nocturnal melatonin secretion. J. Physiol. Anthropol. Appl. Human Sci. 22: 61–63. DOI 10.2114/jpa.2261 http://dx.doi.org/10.2114/jpa.22.61CrossrefGoogle Scholar

  • [17] Lai H. & Singh N.P. 1996. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 69: 513–521. http://dx.doi.org/10.1080/095530096145814CrossrefGoogle Scholar

  • [18] Lai H. & Singh N.P. 1997. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics 18: 446–454. DOI 10.1002/(SICI)1521–186X(1997)18:6〈446::AIDBEM7〉3.0.CO;2–2 http://dx.doi.org/10.1002/(SICI)1521-186X(1997)18:6<446::AID-BEM7>3.0.CO;2-2PubMedCrossrefGoogle Scholar

  • [19] Lee J.M., Stormshak F., Thompson J.M., Thinesen P., Painter L.J., Olenchek E.G., Hess D.L., Forbes R. & Foster D.L. 1993. Melatonin secretion and puberty in female lambs exposed to environmental electric and magnetic fields. Biol. Reprod. 49: 857–864. http://dx.doi.org/10.1095/biolreprod49.4.857CrossrefGoogle Scholar

  • [20] Leszczynski D., Joenväärä S., Reivinen J. & Kuokka R. 2002. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanisms for cancer- and blood-brain barrier-related effects. Differentiation 70(2–3): 120–129. DOI 10.1046/j.1432-0436-2002.700207.x http://dx.doi.org/10.1046/j.1432-0436.2002.700207.xCrossrefGoogle Scholar

  • [21] Repacholi M.H. 1998. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics 19: 1–19. DOI 10.1002/(SICI)1521–186X(1998)19:1〈1::AID-BEM1〉3.0.CO;2–5 http://dx.doi.org/10.1002/(SICI)1521-186X(1998)19:1<1::AID-BEM1>3.0.CO;2-5CrossrefGoogle Scholar

  • [22] Sage S. 2000. An overview of radiofrequency/microwave radiation studies relevant to wireless communication and data, pp. 73–90. In: Proc. International Conference on Cell Tower Sitting. Salzburg, Austria. Google Scholar

  • [23] Saunders R.D., Cridland N.A., Kowalczuk C.I. & Sienkiewicz Z.J. 1997. In vivo biological studies relevant to low level RF health effects, pp. 145–161. In: Bernhardt J.H., Matthes R. & Repacholi M.H. (eds), Non-thermal Effects of RF Electromagnetic Fields, ICNRP 3/97. Märkl-Druck, München. Google Scholar

  • [24] Stärk K.D.C, Krebs T., Altpeter E., Manz B., Griot C. & Abelin T. 1997. Absence of chronic effect of exposure to short-wave radio broadcast signal on salivary melatonin concentrations in dairy cattle. J. Pineal. Res. 22: 171–176. http://dx.doi.org/10.1111/j.1600-079X.1997.tb00320.xCrossrefGoogle Scholar

  • [25] Stevens R.G. & Davis S. 1996. The melatonin hypothesis: electric power and breast cancer. Environ. Health Perspect. 104(Suppl. 1): 135–140. http://dx.doi.org/10.2307/3432703CrossrefGoogle Scholar

  • [26] Tice R., Hook G. & McRee D.I. 2002. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics 23: 113–126. DOI 10.1002/bem.104 http://dx.doi.org/10.1002/bem.104CrossrefGoogle Scholar

  • [27] Trosic I. 2001. Multinucleated giant cell appearance after whole body microwave irradiation of rats. Int. J. Hyg. Environ. Health 204: 133–138. DOI 10.1078/1438-4639-00078 http://dx.doi.org/10.1078/1438-4639-00078CrossrefGoogle Scholar

  • [28] Trosic I., Busljeta I., Kasuba V. & Rozgaj R. 2002. Micronucleus induction after whole-body microwave irradiation of rats. Mutat. Res. 521: 73–79. Google Scholar

  • [29] Trosic I., Busljeta I. & Pavicic I. 2004a. Blood-forming system in rats after whole-body microwave exposure; reference to the lymphocytes. Toxicol. Lett. 154: 125–132. DOI 10.1016/j.tox.let.2004.07.011 http://dx.doi.org/10.1016/j.toxlet.2004.07.011CrossrefGoogle Scholar

  • [30] Trosic I., Busljeta I., Modlic B. 2004b. Investigation of the genotoxic effects of microwave irradiation in rat bone marrow cells: in vivo exposure. Mutagenesis 19: 361–364. http://dx.doi.org/10.1093/mutage/geh042CrossrefGoogle Scholar

  • [31] Trošić I., Mataušićc-Pišl M., Radalj Ž. & Prlićc I. 1999. Animal study on electromagnetic field biological potency. Arh. Hig. Rada Toksikol. 50: 5–11. Google Scholar

  • [32] Verschaeve L. & Maes A. 1998. Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutat. Res. 410: 141–165. http://dx.doi.org/10.1016/S1383-5742(97)00037-9CrossrefGoogle Scholar

  • [33] Vollrath L., Spessert R., Kratzsch T., Keiner M. & Hollmann H. 1997. No short-term effects of high-frequency electromagnetic fields on the mammalian pineal gland. Bioelectromagnetics 18: 376–387. DOI 10.1002/(SICI)1521-86X(1997)18:5<376::AED-BEM5〉3.0.CO;2# http://dx.doi.org/10.1002/(SICI)1521-186X(1997)18:5<376::AID-BEM5>3.0.CO;2-#CrossrefGoogle Scholar

  • [34] Willemsen EW. 1974. Understanding Statistical Reasoning. Freeman WH and Company, San Francisco, 145 pp. DOI: 10.2478/s11756-009-0124-5 Google Scholar

About the article

Published Online: 2009-07-17

Published in Print: 2009-08-01


Citation Information: Biologia, Volume 64, Issue 4, Pages 798–802, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0139-y.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fenju Qin, Jie Zhang, Honglong Cao, Cao Yi, Jian Xiang Li, Jihua Nie, Li Li Chen, Jiajun Wang, and Jian Tong
Journal of Toxicology and Environmental Health, Part A, 2012, Volume 75, Number 18, Page 1120
[2]
Ivančica Trošić, Ivan Pavičić, Ana Marjanović, and Ivana Bušljeta
Archives of Industrial Hygiene and Toxicology, 2012, Volume 63, Number Supplement 1

Comments (0)

Please log in or register to comment.
Log in