Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 64, Issue 4

Issues

Genetic characterization of common carp (Cyprinus carpio) populations from Greece using mitochondrial DNA sequences

Anastasia Imsiridou
  • Department of Fisheries and Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, P.O. Box 157, N. Miltiadi 1, GR-63200, Nea Moudania, Halkidiki, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandros Triantafyllidis
  • School of Biology, Department of Genetics, Development and Molecular Biology, Aristotle University, GR-54124, Thessaloniki, Macedonia, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Athanasios Baxevanis
  • School of Biology, Department of Genetics, Development and Molecular Biology, Aristotle University, GR-54124, Thessaloniki, Macedonia, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Costas Triantaphyllidis
  • School of Biology, Department of Genetics, Development and Molecular Biology, Aristotle University, GR-54124, Thessaloniki, Macedonia, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-07-17 | DOI: https://doi.org/10.2478/s11756-009-0142-3

Abstract

Wild common carp from two lakes and two rivers in Greece were genetically characterized with sequencing analysis of two mitochondrial DNA segments: cytochrome b (1119 bp) and D-loop (646 bp). A total of 9 variable singleton sites and 7 unique haplotypes were detected. A common haplotype was found in three out of the four populations examined, which seems to be the ancestral one and represents the European origin of common carp from Greece. This haplotype could be also justified by the introductions reported with individuals belonging to the Central European race, into many natural habitats in Greece. Limited genetic variation — in Evros and Aliakmonas populations — could be due to bottleneck effects and small effective population sizes, whereas the different haplotypes found in Lake Volvi could represent different common carp stocks. Values of sequence divergence among Greek haplotypes ranged from 0.0006 to 0.0023. The Neighbour-Joining (NJ) phylogenetic tree constructed based on the combined sequences, reveals that the populations of common carp from Greece belong to the European group of populations — which is highly divergent from the South East-Asia cluster — and to the subspecies Cyprinus carpio carpio.

Keywords: Cyprinus carpio; mtDNA; sequencing; cytochrome b; D-loop

  • [1] Apostolidis A.P., Triantaphyllidis C., Kouvatsi A. & Economidis P.S. 1997. Mitochondrial DNA sequence variation and phylogeography among Salmo trutta L. (Greek brown trout) populations. Mol. Ecol. 6: 531–542. DOI 10.1046/j.1365-294X.1997.d01-176.x http://dx.doi.org/10.1046/j.1365-294X.1997.d01-176.xCrossrefGoogle Scholar

  • [2] Avise J.C. 2000. Phylogeography — The History and Formation of Species. Harvard University Press, USA, 447 pp. Google Scholar

  • [3] Balon E.K. 1995. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture 129: 3–48. DOI 10.1016/0044-8486(94)00227-F http://dx.doi.org/10.1016/0044-8486(94)00227-FCrossrefGoogle Scholar

  • [4] Baruš V., Peňáz M. & Kohlmann K. 2001. Cyprinus carpio (Linnaeus, 1758), pp. 85–179. In: Banarescu P.M. & Paepke H.J. (eds), The Freshwater Fishes of Europe, Academic Press, London. Google Scholar

  • [5] Economidis P.S., Dimitriou E., Pagoni R., Michaloudi E. & Natsis L. 2000. Introduced and translocated fish species in the inland waters of Greece. Fish. Manag. Ecol. 7: 239–250. DOI 10.1046/j.1365-2400.2000.00197.x http://dx.doi.org/10.1046/j.1365-2400.2000.00197.xCrossrefGoogle Scholar

  • [6] Froufe E., Magyary I., Lehoczky I. & Weiss S. 2002. MtDNA sequence data supports an Asian ancestry and single introduction of the common carp into the Danube Basin. J. Fish Biol. 61: 301–304. DOI 10.1111/j.1095-8649.2002.tb01756.x http://dx.doi.org/10.1111/j.1095-8649.2002.tb01756.xCrossrefGoogle Scholar

  • [7] Gross R., Kohlmann K. & Kersten P. 2002. PCR-RFLP analysis of the mitochondrial ND-3/4 and ND-5/6 gene polymorphisms in the European and East Asian subspecies of common carp (Cyprinus carpio L.). Aquaculture 204: 507–516. DOI 10.1016/S0044-8486(01)00836-5 http://dx.doi.org/10.1016/S0044-8486(01)00836-5CrossrefGoogle Scholar

  • [8] Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. Google Scholar

  • [9] Hillis D.M., Moritz C. & Mable B.K. 1996. Molecular Systematics. Sinauer Associates, Sunderland, MA. USA, 655 pp. Google Scholar

  • [10] Imsiridou A., Karakousis Y. & Triantaphyllidis C. 1997. Genetic polymorphism and differentiation among chub, Leuciscus cephalus L. (Pisces, Cyprinidae) populations of Greece. Biochem. Syst. Ecol. 25: 537–546. http://dx.doi.org/10.1016/S0305-1978(97)00043-4CrossrefGoogle Scholar

  • [11] Kimura M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA. 78: 454–458. http://dx.doi.org/10.1073/pnas.78.1.454CrossrefGoogle Scholar

  • [12] Kohlmann K., Gross R., Murakaeva A. & Kersten P. 2003. Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquat. Living Resour. 16: 421–431. DOI 10.1016/S099-7440(03)00082-2 http://dx.doi.org/10.1016/S0990-7440(03)00082-2CrossrefGoogle Scholar

  • [13] Kumar S., Tamura K. & Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163. http://dx.doi.org/10.1093/bib/5.2.150CrossrefGoogle Scholar

  • [14] Lehoczky I., Jeney Z., Magyary I., Hancz C. & Kohlmann K. 2005. Preliminary data on genetic variability and purity of common carp (Cyprinus carpio L.) strains kept at the live gene bank at Research Institute for Fisheries, Aquaculture and Irrigation (HAKI) Szarvas, Hungary. Aquaculture 247: 45–49. DOI 10.1016/j.aquaculture.2005.02.017 http://dx.doi.org/10.1016/j.aquaculture.2005.02.017CrossrefGoogle Scholar

  • [15] Lever C. 1996. Naturalized Fishes of the World. San Diego, CA, Academic Press, London, 408 pp. Google Scholar

  • [16] Memiş D. & Kohlmann K. 2006. Genetic characterization of wild common carp (Cyprinus carpio L.) from Turkey. Aquaculture 258: 257–262. DOI 10.1016/j.aquaculture.2006.03.041 http://dx.doi.org/10.1016/j.aquaculture.2006.03.041CrossrefGoogle Scholar

  • [17] Murakami M., Yamashita Y. & Fujitani H. 1998. The complete sequence of mitochondrial genome from a gynogenetic triploid ‘ginbuna’ (Carassius auratus langsdorfii). Zool. Sci. (Tokyo) 15: 335–337. Google Scholar

  • [18] Posada D. & Crandall K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818. http://dx.doi.org/10.1093/bioinformatics/14.9.817CrossrefGoogle Scholar

  • [19] Stephanidis A. 1939. Freshwater fish of Attico-Boetia. Bull. Physic Sci. 50/51: 49–60. Google Scholar

  • [20] Swofford D.L. 1998. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MA. Google Scholar

  • [21] Thai B.T., Burridge C.P., Pham T.A. & Austin C.M. 2004. Using mitochondrial nucleotide sequences to investigate diversity and genealogical relationships within common carp (Cyprinus carpio L.). Anim. Genet. 36: 23–28. DOI 10.111/j.1365-2052.2004.01215.x http://dx.doi.org/10.1111/j.1365-2052.2004.01215.xGoogle Scholar

  • [22] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The CLUSTAL X windows interface: Flexible strategies for multiple alignment aided by quality analysis tool. Nucleic Acids Res. 25: 4876–4882. DOI 10.1093/nar/25.24.4876 http://dx.doi.org/10.1093/nar/25.24.4876CrossrefGoogle Scholar

  • [23] Triantafyllidis A., Abatzopoulos T.J. & Economidis P.S. 1999. Genetic differentiation and phylogenetic relationships among Greek Silurus glanis and Silurus aristotelis (Pisces, Siluridae) populations assessed by PCR-RFLP analysis of mitochondrial DNA segments. Heredity 82: 503–509. DOI 10.1038/sj.hdy.6885140 http://dx.doi.org/10.1038/sj.hdy.6885140CrossrefGoogle Scholar

  • [24] Xiao W.H., Zhang Y.P. & Liu H.Z. 2001. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol. Phylogenet. Evol. 18: 163–173. http://dx.doi.org/10.1006/mpev.2000.0879CrossrefGoogle Scholar

  • [25] Zhou J.F., Wu Q.J., Ye Y.Z. & Tong J.G. 2003. Genetic divergence between Cyprinus carpio carpio and Cyprinus carpio haematopterus as assessed by mitochondrial DNA analysis, with emphasis on origin of European domestic carp. Genetica 119: 93–97. http://dx.doi.org/10.1023/A:1024421001015CrossrefGoogle Scholar

  • [26] Zhou J.F., Wu Q.J., Wang Z.W. & Ye Y.Z. 2004. Molecular phylogeny of three subspecies of common carp Cyprinus carpio, based on sequence analysis of cytochrome b and control region of mtDNA. J. Zool. Syst. Evol. Res. 42: 266–269. http://dx.doi.org/10.1111/j.1439-0469.2004.00266.xCrossrefGoogle Scholar

About the article

Published Online: 2009-07-17

Published in Print: 2009-08-01


Citation Information: Biologia, Volume 64, Issue 4, Pages 781–785, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0142-3.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Łukasz Napora-Rutkowski, Krzysztof Rakus, Zuzanna Nowak, Joanna Szczygieł, Andrzej Pilarczyk, Teresa Ostaszewska, and Ilgiz Irnazarow
Aquaculture, 2017, Volume 473, Page 433

Comments (0)

Please log in or register to comment.
Log in