Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

See all formats and pricing
More options …
Volume 64, Issue 6 (Dec 2009)


Karyotype variation within some native populations of oriental spruce (Picea orientalis) in Turkey

Huseyin Inceer
  • Faculty of Sciences and Arts, Department of Biology, Karadeniz Technical University, 61080, Trabzon, Turkey
  • Email:
/ Deniz Guney
  • Department of Forest Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
  • Email:
/ Sema Hayirlioglu-Ayaz
  • Faculty of Sciences and Arts, Department of Biology, Karadeniz Technical University, 61080, Trabzon, Turkey
  • Email:
/ Melahat Ozcan
  • Faculty of Sciences and Arts, Department of Biology, Karadeniz Technical University, 61080, Trabzon, Turkey
  • Email:
/ Ibrahim Turna
  • Department of Forest Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
  • Email:
/ Ali Ucler
  • Department of Forest Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
  • Email:
Published Online: 2009-10-22 | DOI: https://doi.org/10.2478/s11756-009-0185-5


Karyological studies have been investigated within 8 native Anatolian populations of oriental spruce (Picea orientalis (L.) Link) in Turkey. The somatic chromosome number of 2n = 2x = 24 has been observed in all accessions. The karyotypes are generally asymmetrical with most of the chromosomes having median to median-submedian centromeres. Inter-population variability of the karyotype was summarized with cluster analysis. We found that the karyotypes have positively correlated with the altitudes of the natural habitats. The high value of karyotype asymmetry may be attributed to both microenvironment and natural regeneration methods used in oriental spruce.

Keywords: chromosomes; cluster analysis; karyotype asymmetry; oriental spruce

  • [1] Besse P., Lebrun P., Seguin M. & Lanaud C. 1993. DNA fingerprints in Hevea brassiliensis (Rubber tree) using human minisatellite probes. Heredity 70: 237–244. http://dx.doi.org/10.1038/hdy.1993.35CrossrefGoogle Scholar

  • [2] Brown G.R., Newton C.H. & Carison J.E. 1998. Organization and distribution of a Sau3A tandem repeated DNA sequence in Picea (Pinaceae) species. Genome 41/4: 560–565. http://dx.doi.org/10.1139/gen-41-4-560CrossrefGoogle Scholar

  • [3] Calamassi R., Puglisi S. & Vendramni G. 1988. Genetic variation in morphological and anatomical needle characteristics in Pinus brutia Ten. Silvae Gen. 37: 169–252. Google Scholar

  • [4] Campbell C.S., Wright W.A., Cox M., Vining T.F., Major C.S. & Arsenault M.P. 2005. Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in Picea (Pinaceae): sequence divergence and structure. Mol. Phylogen. Evol. 35: 165–185. http://dx.doi.org/10.1016/j.ympev.2004.11.010CrossrefGoogle Scholar

  • [5] Conkle M.T., Schiller G. & Grunwald C. 1988. Electrophoretic analysis of diversity and phylogeny of Pinus brutia and closely related taxa. Syst. Bot. 13: 411–424. http://dx.doi.org/10.2307/2419301CrossrefGoogle Scholar

  • [6] Copes D.L. & Beckwith R.C. 1997. Isoenzyme identification of Picea glauca, P. sitchensis, and P. lutzii populations. Bot. Gaz. 138: 512–521. http://dx.doi.org/10.1086/336957CrossrefGoogle Scholar

  • [7] Devey M.E., Jermstad K.D., Tauer C.G. & Neale D.B. 1991. Inheritance of RFLP loci in loblolly pine three generation pedigree. Theor. Appl. Genet. 83: 238–242. http://dx.doi.org/10.1007/BF00226257CrossrefGoogle Scholar

  • [8] Gajdošová A. 1988. Karyological structure of the silver fir (Abies alba Mill.) and its two populations. Biologia 43: 415–426. Google Scholar

  • [9] Gordon A. 1996. The sweep of boreal in time and space from forest formations to genes, and implications for management. The Forestry Chronicle 72/1: 19–30. Google Scholar

  • [10] Gorenflot R. & Raicu P. 1980. Cytogénétique et évolution. Masson pp. 1–181. Google Scholar

  • [11] Hizume M. 1988. Karyomorphological studies in the family Pinaceae. Memoirs of the Faculty of Education, Ehime University series, Natur. Sci. 8: 1–108. Google Scholar

  • [12] Hizume M. & Kondo K. 1992. Fluorescent chromosome banding in five taxa of Pseudotsuga, Pinaceae. Kromosomo 66: 2257–2268. Google Scholar

  • [13] Inceer H., Hayırlıoglu-Ayaz S. & Beyazoglu O. 2002. Cytotaxonomic investigations on some taxa of the genus Vicia L. from north-eastern Anatolia. Acta Bot. Gallica 149/2: 125–138. Google Scholar

  • [14] Inceer H. & Beyazoglu O. 2004. Karyological studies in Tripleurospermum (Asteraceae, Anthemideae) from north-east Anatolia. Bot. J. Linn. Soc. 146: 427–438. http://dx.doi.org/10.1111/j.1095-8339.2004.00334.xCrossrefGoogle Scholar

  • [15] Khoshoo T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genet. 10: 1–9. Google Scholar

  • [16] Levan A., Fredga K. & Sanberg A. 1964. Nomeclature for centromeric position on chromosomes. Hereditas 52: 201–220. http://dx.doi.org/10.1111/j.1601-5223.1964.tb01953.xCrossrefGoogle Scholar

  • [17] Muratova E.N. 1995. Chromosome numbers in some species of the Pinaceae family. Bot. Zur. 80(7): 115. Google Scholar

  • [18] Nkongolo K.K. & Klimaszewska K. 1995. Cytological and molecular characterization of Larix decidua, L. leptolepis, and Larix eurolepis: identification of species specific chromosomes and enhancement of mitotic index. Theor. Appl. Genet. 90: 827–834. http://dx.doi.org/10.1007/BF00222018CrossrefGoogle Scholar

  • [19] Nkongolo K.K. 1999. RAPD and cytological analyses of Picea spp. from different provenances: genomic relationships among taxa. Hereditas 130: 137–144. http://dx.doi.org/10.1111/j.1601-5223.1999.00137.xCrossrefGoogle Scholar

  • [20] Ohri D. & Khoshoo T.N. 1986. Genome size in gymnosperms. Plant Syst. Evol. 153: 119–132. http://dx.doi.org/10.1007/BF00989421CrossrefGoogle Scholar

  • [21] Paszko B. 2006. A critical review and a new proposal of karyotype asymmetry indices. Plant Syst. Evol. 258: 39–48. http://dx.doi.org/10.1007/s00606-005-0389-2CrossrefGoogle Scholar

  • [22] Saylor L.C. 1983. Karyotype analysis of the genus Pinus-subgenus Strobus. Silvae Genet. 32: 119–124. Google Scholar

  • [23] Stebbins G.L. 1974. Flowering plants, Evolution above the species level. Arnold, London. Google Scholar

  • [24] Turna I. 1996. Determination of genetic structure of oriental spruce (Picea orientalis L.) Link) populations using isozyme analysis. Karadeniz Technical Univ. Graduate School, PhD thesis, 120 pp. Google Scholar

  • [25] Turna I. 2004. Variation of morphological characters of oriental spruce (Picea orientalis) in Turkey. Biologia 59: 519–526. Web of ScienceGoogle Scholar

  • [26] Turna I., Yahyaoglu Z., Yuksek F., Ayaz F.A. & Guney D. 2006. Morphometric and electrophoretic analysis of 13 populations of Anatolian black pine in Turkey. J. Enviro. Biol. 27(3): 491–497. Google Scholar

  • [27] Warren R. 1982. Spruces in the Arnold arboretum. Arnoldia 42(3): 102–130. Google Scholar

  • [28] Yeh F.C, Chong D.K.X & Yang R.C. 1995. RAPD variation within and among natural populations of trembling apsen (Populus tremuloides Micx) from Alberta. J. Heredity 86: 455–460. Google Scholar

About the article

Published Online: 2009-10-22

Published in Print: 2009-12-01

Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0185-5.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in