Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 64, Issue 6

Issues

Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3

Keni Vidilaseris
  • Biochemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karina Hidayat
  • Biochemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Debbie Retnoningrum
  • School of Pharmacy, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Centre for Life Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zeily Nurachman
  • Biochemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Achmad Noer
  • Biochemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dessy Natalia
  • Biochemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Centre for Life Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-10-22 | DOI: https://doi.org/10.2478/s11756-009-0190-8

Abstract

An Indonesian marine bacterial isolate, which belongs to genus of Bacillus sp. based on 16S rDNA analysis and was identified as Bacillus filicolonicus according to its morphology and physiology, produced a raw starch degrading α-amylase. The partially purified α-amylase using a maize starch affinity method exhibited an optimum pH and temperature of 6.0 and 60°C, respectively. The enzyme retained 72% of its activity in the presence of 1.5 M NaCl. Scanning electron micrographs showed that the α-amylase was capable of degrading starch granules of rice and maize. This α-amylase from Bacillus sp. ALSHL3 was classified as a saccharifying enzyme since its major final degradation product was glucose, maltose, and maltotriose.

Keywords: α-amylase; Bacillus filicolonicus; raw starch; maize; marine

  • [1] Abe A., Tonozuka T., Sakano Y. & Kamitori S. 2004. Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 335: 811–822. http://dx.doi.org/10.1016/j.jmb.2003.10.078Google Scholar

  • [2] Asgher M., Asad M.J., Rahman S.U. & Legge R.L. 2007. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950–955. http://dx.doi.org/10.1016/j.jfoodeng.2005.12.053Web of ScienceCrossrefGoogle Scholar

  • [3] Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • [4] Buchanan R.E., Gibbons N.E., Cowan S.T., Holt J.G., Liston J., Muray R.G.E., Niven C.F., Ravin A.W. & Stanier R.W. 1974. Bergey’s Manual of Determinative Bacteriology, 8th Edition. The Williams and Wilkins Company, Baltimore. Google Scholar

  • [5] Cho H.Y., Kim Y.W., Kim T.J., Lee H.S., Kim D.Y., Kim J.W., Lee Y.W., Lee S.B. & Park K.H. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta. 1478: 333–340. Google Scholar

  • [6] Demirkan E.S., Mikami B., Adachi M., Higasa T., Utsumi S. 2005. α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochem. 40: 2629–2636. http://dx.doi.org/10.1016/j.procbio.2004.08.015CrossrefGoogle Scholar

  • [7] Fuwa H. 1954. A new method for microdetermination of amylase activity by the use of amylose as a substrate. J. Biochem. 21: 219–230. Google Scholar

  • [8] Gupta R., Gigras P., Mohapatra H., Goswami V.K. & Chauhan B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599–1616. http://dx.doi.org/10.1016/S0032-9592(03)00053-0CrossrefGoogle Scholar

  • [9] Hamilton L.M., Kelly C.T. & Fogarty W.M. 1998. Raw starch degradation by the non-raw starch-adsorbing bacterial α-amylase of Bacillus sp. IMD 434. Carbohydr. Res. 314: 251–257. http://dx.doi.org/10.1016/S0008-6215(98)00300-0CrossrefGoogle Scholar

  • [10] Hayashida S., Teramoto Y. & Inoue T. 1988. Production and characteristics of raw potato starch digesting amylase from Bacillus subtilis 65. Appl. Environ. Microbiol. 54: 1516–1522. Google Scholar

  • [11] Ivanova V., Dobreva E. & Emanuilova E. 1993. Purification and characterization of thermostable α-amylase from Bacillus licheniformis. J. Biotechnol. 28: 277–289. http://dx.doi.org/10.1016/0168-1656(93)90176-NCrossrefGoogle Scholar

  • [12] Janecek S. & Sevcik J. 1999. The evolution of starch-binding domain. FEBS Lett. 456: 119–125. http://dx.doi.org/10.1016/S0014-5793(99)00919-9CrossrefGoogle Scholar

  • [13] Kiran K.K. & Chandra T. S. 2008. Production of surfactant and detergent-stable, halophilic, and alkalitolerant α-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl. Microbiol. Biotechnol. 77: 1023–1031. http://dx.doi.org/10.1007/s00253-007-1250-zWeb of ScienceCrossrefGoogle Scholar

  • [14] Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature227: 680–68 http://dx.doi.org/10.1038/227680a0CrossrefGoogle Scholar

  • [15] Lo H.F., Lin L.L., Chiang W.Y., Chie M.C., Hsu W.H. & Chang C.T. 2002. Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch. Microbiol. 178: 115–123. http://dx.doi.org/10.1007/s00203-002-0431-5CrossrefGoogle Scholar

  • [16] MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20. Google Scholar

  • [17] Machovic M. & Janecek S. 2006. The evolution of putative starch binding domains. FEBS Lett. 580: 6349–6356. http://dx.doi.org/10.1016/j.febslet.2006.10.041CrossrefGoogle Scholar

  • [18] Malhotra R., Noorvez S.M. & Satyanarayana T. 2000. Production and partial characterization of thermostable and calcium independent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31: 378–384. http://dx.doi.org/10.1046/j.1472-765x.2000.00830.xCrossrefGoogle Scholar

  • [19] Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426 428. Google Scholar

  • [20] Mohapatra B.R., Banerjee U.C. & Bapuji M. 1998. Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J. Biotechnol. 60: 113–117. http://dx.doi.org/10.1016/S0168-1656(97)00197-1CrossrefGoogle Scholar

  • [21] Najafi M.F., Deobagkar D. & Deobagkar D. 2005. Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Expr. Purif. 41: 349–354. http://dx.doi.org/10.1016/j.pep.2005.02.015CrossrefGoogle Scholar

  • [22] Najafi M.F. & Kembhavi A. 2005. One step purification and characterization of an extracellular amylase from marine Vibrio sp. Enzyme Microb. Technol. 36: 535–539. http://dx.doi.org/10.1016/j.enzmictec.2004.11.014CrossrefGoogle Scholar

  • [23] Robyt J.F. 1998. Essentials of Carbohydrate Chemistry. Springer, Boston, 399 pp. Google Scholar

  • [24] Sodhi H.K., Sharma K., Gupta J.K. & Soni S.K. 2005. Production of a thermostable amylase by solid-state fermentation and its synergistic use in the hydrolysis of malt strarch for alcohol production. Process Biochem. 40: 525–534. http://dx.doi.org/10.1016/j.procbio.2003.10.008CrossrefGoogle Scholar

  • [25] Van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and application of starch converting enzymes of the amylase family. J. Biotechnol. 94: 137–155. http://dx.doi.org/10.1016/S0168-1656(01)00407-2CrossrefGoogle Scholar

About the article

Published Online: 2009-10-22

Published in Print: 2009-12-01


Citation Information: Biologia, Volume 64, Issue 6, Pages 1047–1052, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-009-0190-8.

Export Citation

© 2009 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Arup Jyoti Das, Tatsuro Miyaji, and Sankar Chandra Deka
The Journal of General and Applied Microbiology, 2017
[2]
Ahmad Homaei, Mehri Ghanbarzadeh, and Ferial Monsef
International Journal of Biological Macromolecules, 2016, Volume 83, Page 306
[3]
Hui Peng, Maojiao Chen, Lu Yi, Xiaohan Zhang, Min Wang, Yazhong Xiao, and Nannan Zhang
Journal of Molecular Catalysis B: Enzymatic, 2015, Volume 119, Page 71
[4]
Balu Jancy Kalpana and Shunmugiah Karutha Pandian
Journal of Basic Microbiology, 2014, Volume 54, Number 8, Page 802
[5]
Jigang Yu, Chengliang Wang, Yanjin Hu, Yuanqiu Dong, Ying Wang, Xiaoming Tu, Hui Peng, and Xuecheng Zhang
Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2013, Volume 69, Number 3, Page 263
[6]
F. Puspasari, O.K. Radjasa, A.S. Noer, Z. Nurachman, Y.M. Syah, M. van der Maarel, L. Dijkhuizen, Š. Janeček, and D. Natalia
Journal of Applied Microbiology, 2013, Volume 114, Number 1, Page 108
[7]
Yin Lei, Hui Peng, Ying Wang, Yuantao Liu, Fang Han, Yazhong Xiao, and Yi Gao
Applied Microbiology and Biotechnology, 2012, Volume 94, Number 6, Page 1577
[8]
Fernita Puspasari, Zeily Nurachman, Achmad Saefuddin Noer, Ocky Karna Radjasa, Marc J. E. C. van der Maarel, and Dessy Natalia
Starch - Stärke, 2011, Volume 63, Number 8, Page 461

Comments (0)

Please log in or register to comment.
Log in